
Formal Modelling, Safety Analysis, and Verification of Organic
Computing Applications
Wolfgang Reif, Florian Nafz, Hella Seebach, Jan-Philipp Steghöfer

SAVE ORCA

Outline

• Motivation, goals and challenges
• Target systems
• Software engineering for Organic Computing
• RIA: Restore Invariant Approach
• Formal modelling and verification
• ORE: ODP Runtime Environment
• Summary and outlook for next phase

28.09.2009 2

Example: adaptive production cell

• Traditional control:
• Addition of robots for better efficiency only manually.

• Failure of one component leads to system failure.

• Adaptation to new workpieces needs significant adaptation of control.

28.09.2009 3

unprocessed

workpieces

processed

workpieces

Application specific software solution
+

Example: adaptive production cell

• Use of flexible HW components

• Flexible robots

• Flexible transport system

• Workpieces with RFIDs for identification

• Addition of degree of freedom (e.g.):

• Use of different tools

• Execution of different transport commands

• Observer/Controller:

• Monitoring of workpieces and components in the system

• Role distributions (re-)configuration of components

28.09.2009 4

3x 4x

Example: adaptive production cell

28.09.2009 6

Processed
workpieces

Unprocessed
workpieces

I. II. III.

Goals and Challenges

28.09.2009 7

• Software & Verification Co-Design for highly reliable
Organic Computing applications
– Design and construction

• Top-Down design methodology

• Extensible generic runtime environment

• Integrated software engineering process

– Formalization of self-x
• What does self-x mean in the context of the considered system

class?

– Methods and tools for formal analysis and verification
• Correctness – and behavioral guarantees despite of self-organization

• Qualitative and quantitative analysis

Target Systems

• Software intensive applications that are
– particularly resistant against disturbances and component

failures (w.r.t. functional correctness, safety, security)

– adaptive to changing requirements and modified tasks

• Resource-flow systems
– Production automation

– Logistics

• Agent / Role based systems
– Each agent has several capabilities

– Each task needs different processing steps

– Processing steps are a given sequence of capabilities

28.09.2009 8

Organic Design Pattern for resource-flow systems

28.09.2009 9

-RFS

Organic Design Pattern for resource-flow systems

28.09.2009 10

-RFS

Organic Design Pattern for resource-flow systems

28.09.2009 11

-RFS

Organic Design Pattern for resource-flow systems

28.09.2009 12

-RFS

Organic Design Pattern for resource-flow systems

28.09.2009 13

-RFS

Organic Design Pattern for resource-flow systems

28.09.2009 14

-RFS

Dynamics

• Generic behavior specified
on system class level

• Hierarchical statemachines
for agents and observer /
controller

• Underlying SOS-semantics
for formal model

28.09.2009 15

Communication

• Modelled as sequence
diagramms

• One protocol for each
communication act

• Three for the class of
resource-flow systems

28.09.2009 16

• How to reconcile behavioral guarantees despite self-X ?

Approach

• Define a functional corridor of acceptable behavior
– Invariants that have to be maintained by the system

• Within the corridor: let the system go

RIA: Restore Invariant Approach

28.09.2009 17

real behavior

RIA: Restore Invariant Approach

• Specification of reconfiguration

– o/c reconfiguration is triggered by invariant violation

– o/c tries to restore invariant

28.09.2009

t

working reconfiguration working

INV ¬ INV INV

 Reconfiguration can be specified as constraint solving
problem

 Universal reconfiguration with SAT-Solver/Constraint-
Solver

18

Specification of corridor

28.09.2009 19

• OCL constraints
– Part of the pattern

– Specifying „correct“ role allocations which imply wanted behavior

– Are transformed into predicate logic formula for reconfiguration
and formal specification of the o/c

• Some examples:
– Only available capabilities are assigned

inv: self.availableCapabilities

-> includesAll(self.allocatedRole.CapabilityToApply)

– Ports must be consistent with input/putput

– Agents who exchange resources need to be connected

– All needed capabilities must to be assigned

Formal Model

28.09.2009

Software Engineering Models Parameterized formal model

20

Formal Verification

• Based on parameterized formal model

– Generic verification of system class properties
• Verified once and for all

• „ Resource-flow is correct“

• „ Leaving resources have been processed according to their task“

• „ Agents behave according to their roles“

– Application specific extensions
• Need to be verified once per application

• Using instantiated parameterized model

28.09.2009 21

Formal Analysis

• Adaptive DCCA answers the question:

“Which minimal combination of losses of
capabilities can prohibit fulfillment of the task
permanently?”

in other words:

“How much self-healing is in the system?”

• Process:
– Translate the model into the language of a verification

engine (here SMV)

– aDCCA can then be formulated as (automatically

solvable) deduction problem

28.09.2009 22

self-healing for a given set С of capabilities and a task T, if after failure/loss of
any capability c ∈ С, then it will eventually come to a role allocation in which
T will be achieved again.

(Formal) definition of self-x properties

• A system SYS, which is modeled as an instance of the
organic design pattern is called

28.09.2009 23

self-configuring for a task T, if the system is put into running mode with an
arbitrary role allocation σarb then it will eventually come to a role allocation
σG in which T will be achieved.

self-adapting for a given set Τ = {ti} of tasks, if there is a change of tasks from
t1 to t2 and t1,t2 ∈ Τ, then the system will eventually come to a role allocation
in which the new task t2 will be performed.

self-optimizing for a given task T and a given rating function ƒ:∑ ↦ℝ self-
optimizing (where ∑ denotes the space of all eligible role allocations), if the
system eventually comes to a role allocation σ in which ƒ(σ) is (locally)
minimal over the set ∑.

ODP Runtime Environment (ORE)

• Complete implementation and execution framework
for the class of resource-flow systems

• Functionality common to all ODP agents is provided:
– Communication

– Role selection and execution

– Reconfiguration

– Data models and messages
• Domain and application-specific extension points
• Code transformation from models available

– From domain model: agent definitions and capabilities

– From instance model: bootstrapping scripts and initial
configuration

28.09.2009 24

Summary

• For the class of resource-flow systems
– Definition of how the application is an instance of the pattern
– Code is generated (OC wrapper + observer/controller)
– Class has an integrated invariant and behavioural corridor, which

is verified
– Can be attached to existing system components
– Application-specific extensions need to be verified and

implemented

 Generic top-down approach for this class of systems

28.09.2009 25

SPP-OC Phase III

• Adding self-adaptation
– Removal/addition of agents during runtime

• Integration of self-optimization
– Increase MTTF/MTBF by choosing roles with higher quality
– Higher throughput

• Observer/Controller
– Centralized
– Decentralized

• With global knowledge at each agent
• Local monitoring
• Local reconfiguration ongoing

• Deadlock avoidance strategies

• Complete specification of software engineering process

28.09.2009 26

Publications

[ICSE09]A generic software framework for role-based
Organic Computing systems
Florian Nafz, Frank Ortmeier, Hella Seebach, Jan-Philipp Steghöfer and
Wolfgang Reif
SEAMS 2009: ICSE 2009 Workshop Software Engineering for Adaptive
and Self-Managing Systems

[ATC09] A universal self-organization mechanism for
role-based Organic Computing systems
Florian Nafz, Frank Ortmeier, Hella Seebach, Jan-Philipp Steghöfer and
Wolfgang Reif
Proceedings of the Sixth International Conference on Autonomic and
Trusted Computing (ATC-09)

[SASO08] A specification and construction paradigm
for Organic Computing systems
M. Güdemann, F.Nafz, F.Ortmeier, H.Seebach and W.Reif
Proceedings of the Second IEEE International Conference on Self-
Adaptive and Self-Organizing Systems (SASO 2008), IEEE Computer
Society Press (2008)

[HINF08] Organic Computing for Health Care Systems
F. Nafz, F. Ortmeier, H. Seebach, and W. Reif
Proceedings of International Conference on Health Informatics

[ENASE08] Implementing Organic Computing Systems
with Agentservice
Florian Nafz, Frank Ortmeier, Hella Seebach, Jan-Philipp Steghöfer and
Wolfgang Reif
3rd International Conference on Evaluation of Novel Approaches to
Software Engineering

28.09.2009 27

[CEC07]Design and Construction of Organic Computing
Systems
Hella Seebach, Frank Ortmeier, Wolfgang Reif
Proceedings of 2007 IEEE Congress on Evolutionary Computation, IEEE
Computer Society Press 2007

[ISCAS07]Modeling of self-adaptive systems with SCADE
Matthias Güdemann, Andreas Angerer, Frank Ortmeier, Wolfgang Reif
Proceedings of 2007 IEEE International Symposium on Circuits and Systems,
IEEE Computer Society Press 2007

[ISOLA06] Safety and Dependability Analysis of Self-
Adaptive Systems
M. Güdemann, F. Ortmeier, W. Reif
Proceedings of ISoLA 2006, 2nd International Symposium on Leveraging
Applications of Formal Methods, Verification and Validation, IEEE Computer
Society Press 2006

[GI06]Towards Safe and Secure Organic Computing
Applications
Matthias Güdemann, Florian Nafz, Wolfgang Reif and Hella Seebach
INFORMATIK 2006 – Informatik für Menschen, volume P-93 of GI-Edition –
Lecture Notes in Informatics

[ATC06] Formal Modeling and Verification of Systems with
Self-x Properties
Matthias Güdemann, Frank Ortmeier and Wolfgang Reif
Proceedings of the Third International Conference on Autonomic and Trusted
Computing (ATC-06)

