
September 21-22, 2009 1

Multi-Objective Intrinsic Evolution
of Embedded Systems (MOVES)

Paul Kaufmann, Marco Platzner
Computer Engineering Group
University of Paderborn
{paulk, platzner}@uni-paderborn.de

September 21-22, 2009 2

Motivation / Vision

• investigate intrinsic evolution as a mechanism to achieve self-
adaptation and –optimization for autonomous embedded systems

• an embedded system ...
– adapts to slow changes by simulated evolution

• typically, change of environment

– adapts to radical changes by switching to pre-evolved alternatives
• typically, change in computational resources

– requires intrinsic evolution for autonomous operation

September 21-22, 2009 3

Outline
 motivation/vision

 to last status meeting

 coarse-grained CGP model

 EvoCaches: adaptation of cache mappings

September 21-22, 2009 4

to Last Status Meeting (1)
• working areas

1. models and algorithms
2. system architectures
3. case studies, evaluation

• last status meeting
– evolutionary algorithms: tackling scalability, comparing GA with MOEAs
– reconfigurable SoC: hardware accelerator for k-NN thinning
– application examples: prosthetic hand controllers

• new work done
– comparing GA with MOEAs for hardware evolution
– coarse-granular cartesian genetic programming (CGP) model
– experiments with the functional unit row architecture for classification tasks

(cooperation with University of Oslo)

September 21-22, 2009 5

to Last Status Meeting (2)
• new work done (cont‘d)

– reconfigurable SoC
• hardware accelerator for k-NN thinning [Schumacher et al., FCCM ’09]

[Schumacher et al., FPL ‘09]

– prosthetic hand controllers [Boschmann et al., TAR '09]
[Boschmann et al., TIPS '09]

→ spin-off project “Adaptive Prothetik” funded by BMWi
(University of Paderborn, Orthopädietechnik Winkler, iXtronics, DLR)

– EvoCaches: application-specific cache mappings [Kaufmann et al., AHS '09]

September 21-22, 2009 6

Outline
 motivation/vision

 to last status meeting

• coarse-grained CGP model

• EvoCaches: adaptation of cache mappings

September 21-22, 2009 7

CGP Models
• cartesian genetic programming (CGP) [Miller & Thomson, EuroGP '00]

– array of combinational blocks connected by feed-forward wires
– chromosome defines configuration of the array

• ECGP model [Walker & Miller, EuroGP '04]

– single row of functional blocks
– no restriction on wire lengths
– 1+4 evolutionary strategy

September 21-22, 2009 8

Scalability and CGP
• scalability can be tackled

along three dimensions
– object granularity
– knowledge representation
– representation model

• coarse-grained CGP model
– moving from LUTs and wires to functional units and buses

→ supported by modern FPGA technologies
– moving from structural to behavioral models

→ challenge is to maintain an efficient mapping to real hardware

September 21-22, 2009 9

Coarse-grained CGP: Block
• implementation on Xilinx FPGA technology using DSP48 blocks

– multiply (18x25), add, sub, compare (48x48)
– bit-wise OR, AND, NOT, NOR, NAND, XOR, and XNOR
– wider data types by cascading multiple DSP48E blocks

• configuration through user logic registers
– also denoted as “Virtual Reconfiguration“ (VRC)
– fast reconfiguration (one clock cycle)

September 21-22, 2009 10

Coarse-grained CGP: Interconnect
• hyper cube inspired interconnect

– general feed-forward interconnect too expensive in terms of hardware

• trade-off
– include placement and routing in the CGP chromosome, or
– map an evolved (restricted) DAG to hardware

September 21-22, 2009 11

Coarse-grained CGP: Status
• proof-of-concept implementation on Xilinx Virtex 5

– Linux@PowerPC and CGP core
• access DSP48E via CPU bus
• integration into Linux device driver hierarchy

• integration of the coarse-grained CGP model into the MOVES toolbox
– DSP48E functional model

September 21-22, 2009 12

Outline
 motivation/vision

 to last status meeting

 coarse-grained CGP model

• EvoCaches: adaptation of cache mappings

September 21-22, 2009 13

EvoCache (1)
• classic direct-mapped cache fetches data entry by

– addressing the cache line (index)
– detecting collisions (tag)
– addressing inside the cache line (block index)

• set-associative caches reduce collisions

September 21-22, 2009 14

EvoCache (2)

• idea: application-specific memory-address index mapping function

• reconfigurable circuit maps tag to cache line
• optimization algorithm determines the mapping

September 21-22, 2009 15

Related Work on Adaptive Caches
• optimize cache configuration: size, associativity, replacement strategy

– 2-3 static configurations to improve IPC [Ranganathan et al., ISCA ’00]

– selective cache ways to reduce power consumption [Albonesi, MICRO ’99]

– self-tuning by simple search heuristic to reduce
energy for accessing memory [Zhang et al., ACM TECS ’04]

• optimize cache address to index mapping
– bit-juggling in index and block index fields to [Stanca et al., EuroPar ’00]

reduce miss-rate
– XOR-ing two memory address bits to reduce

miss-rate [Vandierendonck et al., DATE ’06]

– EvoCache approach
• more complex circuit model
• optimization by evolutionary techniques
• optimize for execution time, determine miss-rate and energy

September 21-22, 2009 16

EvoCache Tool Setup

Digital Circuit
Representation

Models
Optimization
Algorithms

MOVES
Evolvable Hardware

Simulation

SimpleScalar
System Simulator

moves.lib

fitness evaluation

MOVES toolbox

cache configuration,
benchmark,
input data

address mapping
function

index

memory address

execution
time [cycles]

execution time, miss rate, energy

September 21-22, 2009 17

Experiment Configuration
• hardware representation model

– CGP: 4-LUTs, one row, 32 columns, unconstrained wire length
– 1+4 evolutionary strategy

• cache configuration
– L1:I, L1:D: 2-way, 1 cycle hit time, 64 lines, block size 16 bytes, LRU
– L2:U: 4-way, 6 cycles hit time, 128 lines, block size 32 bytes, LRU
– we optimize either {L1:I, L1:D} or {L1:I, L1:D, L2:U}

• benchmarks
– bzip2 – text file compression
– JPEG – image compression

September 21-22, 2009 18

Generalization Performance

– best bzip2 training circuit verified on
three data sets

• 10 Linux executable files (ELF)
• 10 HTML web sites (HTML)
• 10 RFC plain text files (RFC)

bzip2 JPEG

– best JPEG training
circuit verified on data
set of ten pictures

September 21-22, 2009 19

Miss Rate and Energy Consumption

September 21-22, 2009 20

EvoCache Issues, Further Work
• cache implementation

– hit time increase: best mapping functions had depth of 3-6 LUTs
– area increase: best mapping functions had 14-19 LUTs, larger tag

• system integration
– application binaries carry EvoCache configuration (backward compatible)
– what to do at context switches?

• experiments with high-performance CPUs and workloads
– simulation times are excessive for caches of modern high-performance

CPUs and realistically large workloads
– need to use execution traces, statistical sampling techniques

• online optimization
– nodes gather traces and generate mapping functions using spare cycles
– evolutionary optimization in a distributed manner (island-GA)

September 21-22, 2009 21

Outline
 motivation/vision

 to last status meeting

 coarse-grained CGP model

 EvoCaches: adaptation of cache mappings

September 21-22, 2009 22

Thank you for your attention!

