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Motivation / Vision

• investigate intrinsic evolution as a mechanism to achieve self-
adaptation and –optimization for autonomous embedded systems

• an embedded system ...
– adapts to slow changes by simulated evolution 

• typically, change of environment 

– adapts to radical changes by switching to pre-evolved alternatives
• typically, change in computational resources

– requires intrinsic evolution for autonomous operation
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Outline
 motivation/vision

  to last status meeting

 coarse-grained CGP model

 EvoCaches: adaptation of cache mappings 
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to Last Status Meeting (1)
• working areas

1. models and algorithms
2. system architectures
3. case studies, evaluation

• last status meeting
– evolutionary algorithms: tackling scalability, comparing GA with MOEAs 
– reconfigurable SoC: hardware accelerator for k-NN thinning 
– application examples: prosthetic hand controllers

• new work done
– comparing GA with MOEAs for hardware evolution
– coarse-granular cartesian genetic programming (CGP) model
– experiments with the functional unit row architecture for classification tasks 

(cooperation with University of Oslo)
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to Last Status Meeting (2)
• new work done (cont‘d)

– reconfigurable SoC
• hardware accelerator for k-NN thinning  [Schumacher et al., FCCM ’09]

[Schumacher et al., FPL ‘09]

– prosthetic hand controllers [Boschmann et al., TAR '09]
[Boschmann et al., TIPS '09]

→ spin-off project “Adaptive Prothetik” funded by BMWi
(University of Paderborn, Orthopädietechnik Winkler, iXtronics, DLR)

– EvoCaches: application-specific cache mappings [Kaufmann et al., AHS '09]
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• coarse-grained CGP model

• EvoCaches: adaptation of cache mappings 



September 21-22, 2009 7

CGP Models
• cartesian genetic programming (CGP) [Miller & Thomson, EuroGP '00]

– array of combinational blocks connected by feed-forward wires
– chromosome defines configuration of the array

• ECGP model [Walker & Miller, EuroGP '04]

– single row of functional blocks
– no restriction on wire lengths
– 1+4 evolutionary strategy
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Scalability and CGP
• scalability can be tackled

along three dimensions
– object granularity
– knowledge representation
– representation model

• coarse-grained CGP model
– moving from LUTs and wires to functional units and buses

→ supported by modern FPGA technologies
– moving from structural to behavioral models

→ challenge is to maintain an efficient mapping to real hardware 
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Coarse-grained CGP: Block
• implementation on Xilinx FPGA technology using DSP48 blocks

– multiply (18x25), add, sub, compare (48x48)
– bit-wise OR, AND, NOT, NOR, NAND, XOR, and XNOR
– wider data types by cascading multiple DSP48E blocks 

• configuration through user logic registers
– also denoted as “Virtual Reconfiguration“ (VRC)
– fast reconfiguration (one clock cycle)
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Coarse-grained CGP: Interconnect
• hyper cube inspired interconnect 

– general feed-forward interconnect too expensive in terms of hardware 

• trade-off
– include placement and routing in the CGP chromosome, or
– map an evolved (restricted) DAG to hardware
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Coarse-grained CGP: Status
• proof-of-concept implementation on Xilinx Virtex 5

– Linux@PowerPC and CGP core 
• access DSP48E via CPU bus
• integration into Linux device driver hierarchy

• integration of the coarse-grained CGP model into the MOVES toolbox
– DSP48E functional model
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 coarse-grained CGP model

• EvoCaches: adaptation of cache mappings 
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EvoCache (1)
• classic direct-mapped cache fetches data entry by

– addressing the cache line (index)
– detecting collisions (tag)
– addressing inside the cache line (block index)

• set-associative caches reduce collisions
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EvoCache (2)

• idea: application-specific memory-address  index mapping function

• reconfigurable circuit maps tag to cache line
• optimization algorithm determines the mapping
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Related Work on Adaptive Caches
• optimize cache configuration: size, associativity, replacement strategy

– 2-3 static configurations to improve IPC [Ranganathan et al., ISCA ’00]

– selective cache ways to reduce power consumption [Albonesi, MICRO ’99]

– self-tuning by simple search heuristic to reduce 
energy for accessing memory   [Zhang et al., ACM TECS ’04]

• optimize cache address to index mapping
– bit-juggling in index and block index fields to [Stanca et al., EuroPar ’00]

reduce miss-rate 
– XOR-ing two memory address bits to reduce 

miss-rate [Vandierendonck et al., DATE ’06] 

– EvoCache approach
• more complex circuit model
• optimization by evolutionary techniques
• optimize for execution time, determine miss-rate and energy
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EvoCache Tool Setup
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Experiment Configuration
• hardware representation model

– CGP: 4-LUTs, one row, 32 columns, unconstrained wire length
– 1+4 evolutionary strategy

• cache configuration
– L1:I, L1:D: 2-way, 1 cycle hit time, 64 lines, block size 16 bytes, LRU
– L2:U: 4-way, 6 cycles hit time, 128 lines, block size 32 bytes, LRU
– we optimize either {L1:I, L1:D} or {L1:I, L1:D, L2:U}

• benchmarks
– bzip2 – text file compression
– JPEG – image compression
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Generalization Performance

– best bzip2 training circuit verified on 
three data sets

• 10 Linux executable files (ELF)
• 10 HTML web sites (HTML)
• 10 RFC plain text files (RFC)

bzip2 JPEG

– best JPEG training 
circuit verified on data 
set of ten pictures
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Miss Rate and Energy Consumption
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EvoCache Issues, Further Work
• cache implementation

– hit time increase: best mapping functions had depth of 3-6 LUTs
– area increase: best mapping functions had 14-19 LUTs, larger tag

• system integration
– application binaries carry EvoCache configuration (backward compatible)
– what to do at context switches?

• experiments with high-performance CPUs and workloads
– simulation times are excessive for caches of modern high-performance 

CPUs and realistically large workloads
– need to use execution traces, statistical sampling techniques

• online optimization
– nodes gather traces and generate mapping functions using spare cycles
– evolutionary optimization in a distributed manner (island-GA)
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Thank you for your attention!


