

Organic Computing Middleware for Ubiquitous Environments

Status report and outlook

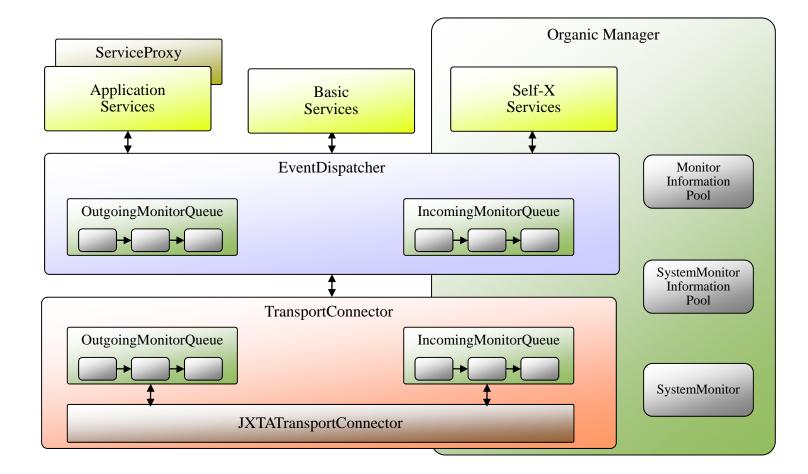
Theo Ungerer, Benjamin Satzger, Sebastian Schlingmann, Julia Schmitt, University of Augsburg

Wolfgang Trumer, Siemens AG

9th OC Colloquium, Augsburg

September 21-22, 2009

Outline


- Status report (1st & 2nd phase)
 - Architecture of OCµ
 - Self-configuration
 - Self-optimization
 - Self-healing
 - Self-protection
 - Achievements and Problems
- Outlook
 - Ailments and Cures
 - New OCµ Architecture (3rd phase)
 - Further research
- Summary

Architecture of OCµ

- Service-oriented middleware for smart environments
- Sophisticated monitoring by monitor queues
- Organic Managers on each node
 - System monitors
 - Include self-x services
- Software developed in Java, currently based on JXTA and implemented on networked PCs
- Application prototype: Smart Doorplates

Architecture of an OCµ Node

Self-configuration Service by Dr. Wolfgang Trumler

- Task: Initial system configuration
- Based on cooperative social behavior
- Nodes negotiate service distribution under configuration constraints
- Distributed and decentralized approach

Self-optimization Service by Dr. Wolfgang Trumler

- Task: Runtime load-balancing
- Inspired by artificial hormone system
- Nodes append workload values to messages
- Four transfer strategies to decide upon service relocation

Self-protection Service by Dr. Andreas Pietzowski

• Task: Protect against attacks, identify malicious messages

- Authorization system for services
- Role management for nodes
- Detection of malicious messages
 - Computer immunology approach
 - Generation, distribution, update of antibodies
- Defense against threats

Self-healing Service by Dr. Benjamin Satzger

- Task: Recovery after system failures
- Failure detection
 - Accrual failure detection algorithm
 - Grouping for scalability
- Failure recovery engine
 - Automated distributed planning
 - User specifies the desired system properties
 - System:
 - Consistency check
 - Automated planning
 - Plan execution

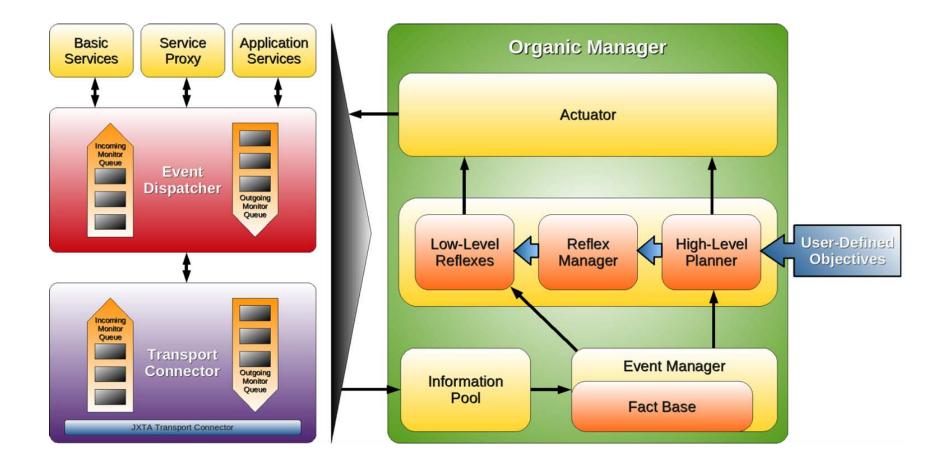
Achievements and Problems

- All self-X services are well investigated, implemented and evaluated on simulators as well as on the middleware running a Smart Doorplate application
- The self-X services partly use the same monitor database, but are not interconnected
 - No synergy between the different algorithms exists so far
- The automated distributed planning of the self-healing service can be resource-intensive and takes a long time

Outline

- Status report (1st & 2nd phase)
 - Architecture of OCµ
 - Self-configuration
 - Self-optimization
 - Self-healing
 - Self-protection
 - Achievements and Problems

Outlook


- Ailments and cures
- New OCµ Architecture (3rd phase)
- Further research

Summary

Ailments and Cures

- No synergy between the different self-X algorithms exist
 - Cure: Integrate self-configuration, self-optimization and selfhealing more closely using the same planning engine
 - Automated distributed planning takes a long time
 - Cure: two-level planner with
 - an elaborate High-level Planner and
 - Low-level Reflexes
- Automated distributed planning is resource-intensive
 - Cure: Implement only reflexes on resource-restricted nodes

New OCµ Architecture (3rd phase)

Further research (1)

• New DFG Research Group OC-TRUST targets to add

Trust mechanisms to Organic Computing

- University of Augsburg (Reif, Andrè, Ungerer)
- University of Hanover (Müller-Schloer, Hähner)
- Work to be done at Chair of Systems and Networking:
 - Decide upon trust models, metrics, and values
 - Improve self-x algorithms by
 - adding trust values to decide and by
 - generating trust values byself-x algorithms for other self-x algorithms
 - Implement trust techniques in OCµ

Further research (2)

• FP-7 Project TERAFLUX on future many-cores (start 2010)

Our Objective: Core and link failure detection

- Previous research: adaptive routing in NoC applying the hormone-based self-optimization techniques (Sebastian Schlingmann)
- Current research: task placement on many-cores with faulty elements (Sebastian Schlingmann)
- Our approach within TERALUX: apply OC techniques to improve reliability
- DFG project CarSoC (together with Uwe Brinkschulte):

AC/OC techniques targeting (hard) real-time systems

Further research (3)

- Migrating OCµ to a Java many-core processor based on
 - Jamuth/Komodo cores
 - The "Augsburg Many-core": A 200-300 core processor will be implemented on 64 interconnected Altera FPGAs
 - OCµ Transport connector must be adapted
 - Suitability of OCµ middleware and self-X techniques for resourcelimited cores
 - Objectives: Investigate OC techniques for
 - reliability and fault-tolerance,
 - load-balancing, and
 - automatic task distribution.

Summary

- Status of OCµ SPP project
 - OCµ prototype matured
 - Self-x algorithms implemented and investigated
 - Self-configuration
 - Self-optimization
 - Self-healing
 - Self-protection
- 3rd phase
 - Improved Organic Manager
 - two-level planning approach
 - Unified basis for self-x algorithms
- Further research going on towards Trust and Many-cores

Publications

- Benjamin Satzger, Florian Mutschelknaus, Faruk Bagci, Florian Kluge, Theo Ungerer, Towards trustworthy self-optimization for distributed systems, Seventh IFIP Workshop on Software Technologies for Future Embedded and Ubiquitous Systems (SEUS), Newport Beach, 2009 (accepted for publication)
- Benjamin Satzger, Andreas Pietzowski, Theo Ungerer, Autonomous and Scalable Failure Detection in Distributed Systems, International Journal of Autonomous and Adaptive Communications Systems, 2009 (accepted for publication)
- Andreas Pietzowski, Benjamin Satzger, Wolfgang Trumler, Theo Ungerer, A Practical Computer Immunology Approach for Self-Protection Enhanced by Optimization Techniques, Journal of Autonomic and Trusted Computing (JoATC), 2009 (accepted for publication)
- Benjamin Satzger and Theo Ungerer, Grouping Algorithms for Scalable Self-Monitoring Distributed Systems, Autonomics 2008: Proceedings of the 2nd ACM/ICST International Conference on Autonomic Computing and Communication Systems, September 23-25, 2008, Turin, Italy
- Wolfgang Trumler, Sebastian Schlingmann, Theo Ungerer, Jun Ho Bahn, Nader Bagherzadeh, Self-optimized Routing in a Network-on-a-Chip, IFIP 20th World Computer Congress, Second IFIP TC 10 International Conference on Biologically-Inspired Collaborative Computing, September 8-9, 2008
- Benjamin Satzger, Andreas Pietzowski, Wolfgang Trumler, Theo Ungerer, Using Automated Planning for Trusted Self-organising Organic Computing Systems, 5th International Conference on Autonomic and Trusted Computing (ATC 2008), June 23-25, 2008
- Benjamin Satzger, Andreas Pietzowski, Wolfgang Trumler, Theo Ungerer, A Lazy Monitoring Approach for Heartbeat-Style Failure Detectors, Proceedings of ARES 2008, The Third International Conference on Availability, Security and Reliability, Barcelona, Spain, March 4-7, 2008
- Wolfgang Trumler, Jörg Ehrig, Andreas Pietzowski, Benjamin Satzger, Theo Ungerer. A Distributed Self-healing Data Store,. The 4th International Conference on Autonomic and Trusted Computing (ATC-07), Hong Kong, China, July 11-13, 2007
- Wolfgang Trumler, Andreas Pietzowski, Benjamin Satzger, Theo Ungerer. Adaptive Self-optimization in Distributed Dynamic Environments. First IEEE International Conference on Self-Adaptive and Self-Organizing Systems, Boston Massachusetts, USA, 9 11 July 2007
- Wolfgang Trumler. Organic Computing Middleware. KI Künstliche Intelligenz, Heft 2/2007
- Benjamin Satzger, Andreas Pietzowski, Wolfgang Trumler, Theo Ungerer. Variations and evaluations of an adaptive accrual failure detector to enable self-healing properties in distributed systems. ARCS'07: Architecture of Computing Systems, Zurich, Switzerland, March 12-15, 2007, Published in "Lecture Notes in Computer Science" (LNCS), ISSN: 0302-9743
- Benjamin Satzger, Andreas Pietzowski, Wolfgang Trumler, Theo Ungerer. A new adaptive accrual failure detector for dependable distributed systems. The 22nd Annual ACM Symposium on Applied Computing, Seoul, Korea, March 11 - 15, 2007
- Andreas Pietzowski, Benjamin Satzger, Wolfgang Trumler, Theo Ungerer. Using Positive and Negative Selection from Immunology for Detection of Anomalies in a Self-Protecting Middleware. 36th annual conference of the Gesellschaft f
 ür Informatik e.V. (GI), Informatik f
 ür Menschen, INFORMATIK 2006, October 2-6, 2006, Dresden, Germany. LNI, Volume P-93
- Andreas Pietzowski, Benjamin Satzger, Wolfgang Trumler, Theo Ungerer. A Bio-Inspired Approach for Self-Protecting an Organic Middleware with Artificial Antibodies
 International Workshop on Self-Organising Systems, IWSOS 2006, September 18-20, 2006, Passau, Germany. LNCS 4124