

Architecture and Design Methodology for Autonomic Systems-on-Chip (ASoC)

Johannes Zeppenfeld¹, Andreas Bernauer², Abdelmajid Bouajila¹, Andreas Herkersdorf¹, Wolfgang Rosenstiel^{2,3}, Walter Stechele¹, Oliver Bringmann³

2 ²Universität Tübingen

Phase 2 Work Packages

ASoC - Architecture and Design Methodology - DFG SPP 1183

BG

Classifier Systems for ASoC

[Wilson95, Zeppenfeld08, Bernauer08a]

하) FZI

ASoC - Architecture and Design Methodology - DFG SPP 1183

/ and SW at Design and Run Time

	Hardware	Software
ign ne	 No hardware available Simulation based only Previous generations of an autonomic system can be used to collect data for further design cycles 	 Full XCS implementation for best possible learning Design tools such as ASoCsim running offline Generation of rules to be used at run time Determination of parameters to be used in system
un ne	 Learning classifier table as hwo optimized reinforcement learning algorithm optimized for hardware Learning through dynamic adjustment of fitness value as indication of rule effectiveness 	 Autonomic configuration software running on system Long term goal specification through parameterization of target function
	 Organic self-x properties can be 	Responsible for rule replacement in

sign Example: Core Allocation

- iven c cores, partially occupied, elect n free cores
- xample: c=9, n=2
- Random number of cores are occupied: Input (condition): 111000000
- 2. Evaluator chooses allocation by index: Output (action): 00000011
- Evaluator receives reward for a valid allocation (no allocated cores were occupied)
- djust difficulty by putting constraints n free cores

FZI

8C

ining During Design Time

ntime Example: MP-SoC

- Applications, Objectives, Rewards
 - Self-organized workload balancing among multiple CPUs

FZI

ee

- Objective function to minimize:
 - $\delta_{\text{Load}} = |f_{\text{cpu n}} \cdot \text{util}_{\text{cpu n}} f_{\text{cpu avg}} \cdot \text{util}_{\text{cpu avg}}|$ $\delta_{\text{Util}} = 1.0 - \text{util}_{\text{cpu n}}$ $\delta_{\text{Freq}} = f_{\text{cpu n}}$ $O_{CPU} = W_1 \cdot \delta_{Load} + W_2 \cdot \delta_{Util} + W_3 \cdot \delta_{Freq}$ $O_{Sys} = W_a \cdot O_{CPU1} + W_b \cdot O_{CPU2} + \dots$ $O_T = O_{Sys}$ at time T Reward function: OT 1.0

www.ww

CPU3

alability of ASoC

ow to efficiently train XCS for systems with many cores

- Reduce simulation time due to temperature estimation
- Reduce simulation time due to rule table generation
- /hat is the effect of many distributed evaluators (LCTs)

Reduce simulation time

Hierarchical

pendability Assessment

ecision system should be able to handle failures in all omponents (in AE as well as FE)

OC

- ependability of resulting design should be assessable
- rain decision system using TLM fault injection
- Continue injecting errors on the functional layer
- Add error injection to the autonomic layer
- igh-level simulation model of failures at all locations
- Model failures of independent components
- Model failures of dependent components
- Classify errors (no error, wrong output, deadlock, ...)
- ssess resulting ASoC dependability

bustness of the Autonomic Layer

lonitors to monitor the autonomic layer Es will supervise both FE and neighboring AEs oftware monitoring task verifies AE functionality

ПП

OC

sts of Emergence

heoretical analysis of XCS

- Minimum number of classifiers?
- Necessary duration of learning at design time?
- Upper bounds on duration of self-optimization at run time?

- Necessary rule-update frequency at run time?
- valuate two further rule-based decision systems
- ARON (in cooperation with Prof. Brockmann)
- X-TCS (semi-Markov to solve timing problem)
- reliminary results
- Predict number of necessary classifiers and learning time
- Level of knowledge of the goal has significant impact on complexity

tisfying Hard Constraints

- iolating soft constraints leads to performance egradation.
- iolating hard constraints could lead to system failure.
 - ----- Direct Constraint
 - —— Indirect Hard Constraint
 - ---- Indirect Soft Constraint

пп

6C

oC Prototype

- eal-world applications running on Leon3-based rototype:
- Networking (Varying packet rate, type and size)
- Video Processing (Video frames > 300 kB @ 25 frames/sec)
- erify that the ASoC FPGA prototype performs selfptimization, self-correction and learning.

operations

- eam of Prof. Reif
- Verification of self-x properties based on logic model
- Tools for reliability estimations
- eams of Prof. Müllerchloer / Prof. Schmeck
- LCS concept and implementation
- eam of Prof. Maehle / rof. Brockmann
- Cooperation on HW/SW

- Team of Prof. Ernst
 - Interested in reliability estimation

пп

0C.

- DodOrg Karlsruhe
 - Organic Middleware

ase 2 Publications

rnauer08a] A Bernauer, D Fritz, W Rosenstiel, *Evaluation of the Learning Classifier System XCS for SoC run-time ntrol*, Lecture Notes in Informatics, Vol. 134, p.761-768, Springer, Gesellschaft für Informatik

rnauer08b] A Bernauer, D Fritz, B Sander, O Bringmann, W Rosenstiel, *Current state of ASoC design thodology*, http://drops.dagstuhl.de/opus/frontdoor.php?source_opus=1564, ISSN 1862-4405

rnauer09] A. Bernauer, W. Rosenstiel, O. Bringmann, *Generic Self-Adaptation to Reduce Design Effort for* stem-on-Chip, SASO 2009

erkersdorf08] A Herkersdorf, J Zeppenfeld, A Bouajila, W Stechele, *Hardware-Supported Learning Classifier* bles in Autonomic Systems on Chip, Dagstuhl Seminar 08141, March 30 - April 4, 2008

nkes07] A Lankes, T Wild, J Zeppenfeld, *Power estimation of Variant SoCs with TAPES*. In: Euromicro-DSD 07

ehl09] A. Viehl, B. Sander, O. Bringmann, W. Rosenstiel, *Analysis of Non-functional Properties of MPSoC* signs, Languages for Embedded Systems and their Applications, Lecture Notes in Electrical Engineering, Vol 36

ppenfeld08] J Zeppenfeld, A Bouajila, W Stechele, A Herkersdorf, *Learning Classifier Tables for Autonomic* stems on Chip, Lecture Notes in Informatics, Vol. 134, p.769-776, Springer, Gesellschaft für Informatik

ppenfeld10sub] J. Zeppenfeld, A. Bouajila, W. Stechele, A. Herkersdorf, *Autonomic Workload Balancing for Iticore Processor Systems*, submitted to ARCS 2010

blications and References

er08a] A Bernauer, D Fritz, W Rosenstiel, *Evaluation of the g Classifier System XCS for SoC run-time control*, Lecture Notes natics, Vol. 134, p.761-768, Springer, Gesellschaft für Informatik

er08b] A Bernauer, D Fritz, B Sander,

- mann, W Rosenstiel, *Current state of ASoC design methodology*, ops.dagstuhl.de/opus/
- pr.php?source_opus=1564, ISSN 1862-4405

er09] A. Bernauer, W. Rosenstiel, O. Bringmann, *Generic Selftion to Reduce Design Effort for System-on-Chip*, SASO 2009

sdorf08] A Herkersdorf, J Zeppenfeld,

ila, W Stechele, *Hardware-Supported Learning Classifier Tables nomic Systems on Chip*, Dagstuhl Seminar 08141, March 30 -2008

07] A Lankes, T Wild, J Zeppenfeld, *Power estimation of Variant ith TAPES*. In: Euromicro- DSD 2007.

A. Viehl, B. Sander, O. Bringmann, W. Rosenstiel, *Analysis of actional Properties of MPSoC Designs*, Languages for Embedded s and their Applications, Lecture Notes in Electrical Engineering,

nfeld08] J Zeppenfeld, A Bouajila, W Stechele, A Herkersdorf, g Classifier Tables for Autonomic Systems on Chip, Lecture Notes natics, Vol. 134, p.769-776, Springer, Gesellschaft für Informatik

nfeld10sub] J. Zeppenfeld, A. Bouajila, W. Stechele, A. dorf, "Autonomic Workload Balancing for Multicore Processor s", submitted to ARCS 2010 [Gold03] A Gold, A Kos, *Temperature Influence on Power Consumption and Time Dealy*, Dep. Electronics, Cracow, Poland, 2003.

ΠШ

- [Huang04] W Huang, MR Stan, K Skadron, K Sankaranarayanan, S Ghosh, S Velusamy, Compact Thermal Modeling for Temperature-Aware Design, DAC 04.
- [Wilson95] S. Wilson, Classifier fitness based on accuracy, Evolutionary Computation, 3, 1995, pp. 149-175
- [Zhu06] D Zhu, Reliability-Aware Dynamic Energy Management in Dependable Embedded Real-Time Systems, RTAS'06, IEEE Computer Society, 2006, p. 397-407

Interconnect

- rovides an interconnect between the AEs in order to ermit IPs status exchange and therefore global ptimization
- E interconnect:
- AE interconnect is independent from FE interconnect
- Serial ring architecture
 - Simple in comparison to other buses (AMBA, PLB..)
 - Suffices requirements (bandwidth, latency)
 - Optimized version of serial ring (add control bits in order to simplify logic and save registers)

nplementation results

	2 bit ctrl + 1 bit data	2 bit ctrl + 4 bit data	
esources	246 slices	300 slices	

	Hardware	Software
me	No hardware available Simulation based only Previous generations of an autonomic system can be used to collect data for further design cycles	Design tools such as ASoCsim running offline Full XCS implementation for best possible learning capabilities Generation of rules to be used at run time Determination of parameters to be used in system (number of cores, protection scheme, size of classifier population, etc.)
ne	Learning classifier table as reinforcement learning algorithm optimized for hardware Learning through dynamic adjustment of fitness value as indication of rule effectiveness Low level monitoring of system parameters and immediate intervention to prevent critical faults or error propagation Organic self-x properties can be validated with an operational ASoC FPGA prototype	Autonomic configuration software running on the system Long term goal specification through parameterization of target function (global RPP metric) Responsible for rule replacement in LCT hardware Preparation of assorted monitor signals for a potential autonomic middleware (not in the scope of ASoC)

elf-Organizing MPSoC

If (CPU util high AND f is high) then Migrate task Else if (CPU util high AND f is low) then Increase f Else if (CPU util low AND f is high) then Decrease f End

[Zeppenfeld08]

Ш

66

Learning Classifier Table:

- HW implementation of XCS-based reinforcement machine learning technique [Wilson95]
- Multi-conditional rules with actions and reward oriented fitness

