
1Technische Universität München

2Universität Tübingen

3Forschungszentrum Informatik

Architecture and Design Methodology for
Autonomic Systems-on-Chip (ASoC)

Johannes Zeppenfeld1, Andreas Bernauer2, Abdelmajid Bouajila1,
Andreas Herkersdorf1, Wolfgang Rosenstiel2,3, Walter Stechele1,

Oliver Bringmann3

ASoC - Architecture and Design Methodology - DFG SPP 1183 2

Project Reminder

ASoC - Architecture and Design Methodology - DFG SPP 1183 3

Phase 2 Work Packages

ASoC - Architecture and Design Methodology - DFG SPP 1183 4

Classifier Systems for ASoC

Design-
Time

Run-
Time

Genetic
Algorithm

[Wilson95, Zeppenfeld08, Bernauer08a]

XCS

ZCS

LCT

W and SW at Design and Run Time

Hardware Software

sign
me

• No hardware available
• Simulation based only
• Previous generations of an

autonomic system can be used to
collect data for further design
cycles

• Full XCS implementation for best
possible learning

• Design tools such as ASoCsim
running offline

• Generation of rules to be used at
run time

• Determination of parameters to be
used in system

un
me

• Learning classifier table as hw-
optimized reinforcement learning
algorithm optimized for hardware

• Learning through dynamic
adjustment of fitness value as
indication of rule effectiveness

• Organic self-x properties can be

• Autonomic configuration software
running on system

• Long term goal specification
through parameterization of target
function

• Responsible for rule replacement in

sign Example: Core Allocation

Given c cores, partially occupied,
elect n free cores
xample: c=9, n=2

1. Random number of cores are occupied:
Input (condition): 111000000

2. Evaluator chooses allocation by index:
Output (action): 000000011

3. Evaluator receives reward
for a valid allocation
(no allocated cores were occupied)

djust difficulty by putting constraints
n free cores

0 1 2
543

6 7 8

aining During Design Time

ntime Example: MP-SoC

• Applications, Objectives, Rewards
– Self-organized workload balancing

among multiple CPUs
– Objective function to minimize:

δLoad = |fcpu n·utilcpu n − fcpu avg·utilcpu avg|
δUtil = 1.0 − utilcpu n

δFreq = fcpu n

OCPU = w1· δLoad + w2· δUtil + w3· δFreq

OSys = wa·OCPU1 + wb·OCPU2 + …
OT = OSys at time T

– Reward function:

1.0

0.5

OT

R
(O

T)
T
1

T
2

T
3

T
4

T
5

tonomic Task Migration

tonomic Frequency Adjustment

U
til

iz
at

io
n

Fr
eq

ue
nc

y
(G

H
z) CPU1

CPU2

CPU3

sulting Packet Latency

Av
er

ag
e

La
te

nc
y

(μ
s)

ase 3 Work Packages

alability of ASoC

ow to efficiently train XCS for systems with many cores
– Reduce simulation time due to temperature estimation
– Reduce simulation time due to rule table generation

What is the effect of many distributed evaluators (LCTs)

Hierarchical
AE interconnect

Reduce
simulation time

XCS Learning

Temperature
Simulation

pendability Assessment

ecision system should be able to handle failures in all
omponents (in AE as well as FE)
ependability of resulting design should be assessable

rain decision system using TLM fault injection
– Continue injecting errors on the functional layer
– Add error injection to the autonomic layer
igh-level simulation model of failures at all locations

– Model failures of independent components
– Model failures of dependent components
– Classify errors (no error, wrong output, deadlock, …)
ssess resulting ASoC dependability

bustness of the Autonomic Layer

Monitors to monitor the autonomic layer
Es will supervise both FE and neighboring AEs
oftware monitoring task verifies AE functionality

.

.

.

CPU

sts of Emergence

heoretical analysis of XCS
– Minimum number of classifiers?
– Necessary duration of learning at design time?
– Upper bounds on duration of self-optimization at run time?
– Necessary rule-update frequency at run time?
valuate two further rule-based decision systems

– ARON (in cooperation with Prof. Brockmann)
– X-TCS (semi-Markov to solve timing problem)
reliminary results

– Predict number of necessary classifiers and learning time
– Level of knowledge of the goal has significant impact on

complexity

tisfying Hard Constraints

iolating soft constraints leads to performance
egradation.
iolating hard constraints could lead to system failure.

oC Prototype

Real-world applications running on Leon3-based
rototype:
– Networking (Varying packet rate, type and size)
– Video Processing (Video frames > 300 kB @ 25 frames/sec)
erify that the ASoC FPGA prototype performs self-
ptimization, self-correction and learning.

operations

eam of Prof. Reif
– Verification of self-x

properties based on logic
model

– Tools for reliability
estimations

eams of Prof. Müller-
chloer / Prof. Schmeck

– LCS concept and
implementation

eam of Prof. Maehle /
rof. Brockmann

– Cooperation on HW/SW

• Team of Prof. Ernst
– Interested in reliability

estimation
• DodOrg Karlsruhe

– Organic Middleware

ase 2 Publications

ernauer08a] A Bernauer, D Fritz, W Rosenstiel, Evaluation of the Learning Classifier System XCS for SoC run-time
ntrol , Lecture Notes in Informatics, Vol. 134, p.761-768, Springer, Gesellschaft für Informatik

ernauer08b] A Bernauer, D Fritz, B Sander, O Bringmann, W Rosenstiel, Current state of ASoC design
thodology, http://drops.dagstuhl.de/opus/frontdoor.php?source_opus=1564, ISSN 1862-4405

ernauer09] A. Bernauer, W. Rosenstiel, O. Bringmann, Generic Self-Adaptation to Reduce Design Effort for
stem-on-Chip, SASO 2009

erkersdorf08] A Herkersdorf, J Zeppenfeld, A Bouajila, W Stechele, Hardware-Supported Learning Classifier
bles in Autonomic Systems on Chip, Dagstuhl Seminar 08141, March 30 - April 4, 2008

nkes07] A Lankes, T Wild, J Zeppenfeld, Power estimation of Variant SoCs with TAPES. In: Euromicro- DSD
07

ehl09] A. Viehl, B. Sander, O. Bringmann, W. Rosenstiel, Analysis of Non-functional Properties of MPSoC
signs, Languages for Embedded Systems and their Applications, Lecture Notes in Electrical Engineering, Vol 36

eppenfeld08] J Zeppenfeld, A Bouajila, W Stechele, A Herkersdorf, Learning Classifier Tables for Autonomic
stems on Chip, Lecture Notes in Informatics, Vol. 134, p.769-776, Springer, Gesellschaft für Informatik

eppenfeld10sub] J. Zeppenfeld, A. Bouajila, W. Stechele, A. Herkersdorf, Autonomic Workload Balancing for
lticore Processor Systems, submitted to ARCS 2010

blications and References
er08a] A Bernauer, D Fritz, W Rosenstiel, Evaluation of the
g Classifier System XCS for SoC run-time control , Lecture Notes
matics, Vol. 134, p.761-768, Springer, Gesellschaft für Informatik

er08b] A Bernauer, D Fritz, B Sander,
mann, W Rosenstiel, Current state of ASoC design methodology,
ops.dagstuhl.de/opus/

or.php?source_opus=1564, ISSN 1862-4405

er09] A. Bernauer, W. Rosenstiel, O. Bringmann, Generic Self-
tion to Reduce Design Effort for System-on-Chip, SASO 2009

sdorf08] A Herkersdorf, J Zeppenfeld,
ila, W Stechele, Hardware-Supported Learning Classifier Tables

nomic Systems on Chip, Dagstuhl Seminar 08141, March 30 -
2008

s07] A Lankes, T Wild, J Zeppenfeld, Power estimation of Variant
with TAPES. In: Euromicro- DSD 2007.

9] A. Viehl, B. Sander, O. Bringmann, W. Rosenstiel, Analysis of
nctional Properties of MPSoC Designs, Languages for Embedded
s and their Applications, Lecture Notes in Electrical Engineering,

nfeld08] J Zeppenfeld, A Bouajila, W Stechele, A Herkersdorf,
g Classifier Tables for Autonomic Systems on Chip, Lecture Notes
matics, Vol. 134, p.769-776, Springer, Gesellschaft für Informatik

nfeld10sub] J. Zeppenfeld, A. Bouajila, W. Stechele, A.
sdorf, “Autonomic Workload Balancing for Multicore Processor
s”, submitted to ARCS 2010

• [Gold03] A Gold, A Kos, Temperature Influence on
Power Consumption and Time Dealy, Dep. Electronics,
Cracow, Poland, 2003.

• [Huang04] W Huang, MR Stan, K Skadron,
K Sankaranarayanan, S Ghosh, S Velusamy, Compact
Thermal Modeling for Temperature-Aware Design, DAC
04.

• [Wilson95] S. Wilson, Classifier fitness based on
accuracy, Evolutionary Computation, 3, 1995, pp. 149-
175

• [Zhu06] D Zhu, Reliability-Aware Dynamic Energy
Management in Dependable Embedded Real-Time
Systems, RTAS'06, IEEE Computer Society, 2006, p.
397-407

ckup

sulting Packet Latency

Interconnect

rovides an interconnect between the AEs in order to
ermit IPs status exchange and therefore global
ptimization
E interconnect:

– AE interconnect is independent from FE interconnect
– Serial ring architecture

• Simple in comparison to other buses (AMBA, PLB..)
• Suffices requirements (bandwidth, latency)
• Optimized version of serial ring (add control bits in order to simplify logic and save

registers)

mplementation results
2 bit ctrl + 1 bit data 2 bit ctrl + 4 bit data

esources 246 slices 300 slices

t N * (L N) N * (L/4 N) N b f d

Hardware Software

me
� No hardware available
� Simulation based only
� Previous generations of an autonomic system can be

used to collect data for further design cycles

� Design tools such as ASoCsim running offline
� Full XCS implementation for best possible learning

capabilities
� Generation of rules to be used at run time
� Determination of parameters to be used in system

(number of cores, protection scheme, size of classifier
population, etc.)

me � Learning classifier table as reinforcement learning
algorithm optimized for hardware

� Learning through dynamic adjustment of fitness value
as indication of rule effectiveness

� Low level monitoring of system parameters and
immediate intervention to prevent critical faults or error
propagation

� Organic self-x properties can be validated with an
operational ASoC FPGA prototype

� Autonomic configuration software running on the
system

� Long term goal specification through parameterization
of target function (global RPP metric)

� Responsible for rule replacement in LCT hardware
� Preparation of assorted monitor signals for a potential

autonomic middleware (not in the scope of ASoC)

elf-Organizing MPSoC

Learning Classifier Table:
 HW implementation of XCS-based

reinforcement machine learning
technique [Wilson95]

 Multi-conditional rules with actions
and reward oriented fitness
evaluation

[Zeppenfeld08]

load,
tilization

Frequency,
Task Migration

If (CPU util high AND f is high) then
Migrate task

Else if (CPU util high AND f is low) then
Increase f

Else if (CPU util low AND f is high) then
Decrease f

End

mmary

