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Classifier Systems for ASoC

Design-
Time

Run-
Time

Genetic 
Algorithm

[Wilson95, Zeppenfeld08, Bernauer08a]
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ZCS
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W and SW at Design and Run Time

Hardware Software

sign 
me

• No hardware available
• Simulation based only
• Previous generations of an 

autonomic system can be used to 
collect data for further design 
cycles

• Full XCS implementation for best 
possible learning

• Design tools such as ASoCsim 
running offline

• Generation of rules to be used at 
run time

• Determination of parameters to be 
used in system

un 
me

• Learning classifier table as hw-
optimized reinforcement learning 
algorithm optimized for hardware

• Learning through dynamic 
adjustment of fitness value as 
indication of rule effectiveness

• Organic self-x properties can be 

• Autonomic configuration software 
running on system

• Long term goal specification 
through parameterization of target 
function

• Responsible for rule replacement in 



sign Example: Core Allocation

Given c cores, partially occupied, 
elect n free cores
xample: c=9, n=2

1. Random number of cores are occupied:
Input (condition): 111000000

2. Evaluator chooses allocation by index:
Output (action): 000000011

3. Evaluator receives reward
for a valid allocation
(no allocated cores were occupied)

djust difficulty by putting constraints 
n free cores
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aining During Design Time



ntime Example: MP-SoC

• Applications, Objectives, Rewards
– Self-organized workload balancing 

among multiple CPUs
– Objective function to minimize:

δLoad = |fcpu n·utilcpu n − fcpu avg·utilcpu avg|
δUtil = 1.0 − utilcpu n

δFreq = fcpu n

OCPU = w1· δLoad + w2· δUtil + w3· δFreq

OSys = wa·OCPU1 + wb·OCPU2 + …
OT = OSys at time T

– Reward function:
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tonomic Task Migration



tonomic Frequency Adjustment
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sulting Packet Latency
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ase 3 Work Packages



alability of ASoC

ow to efficiently train XCS for systems with many cores
– Reduce simulation time due to temperature estimation
– Reduce simulation time due to rule table generation

What is the effect of many distributed evaluators (LCTs)

Hierarchical 
AE interconnect

Reduce 
simulation time

XCS Learning

Temperature
Simulation



pendability Assessment

ecision system should be able to handle failures in all 
omponents (in AE as well as FE)
ependability of resulting design should be assessable

rain decision system using TLM fault injection
– Continue injecting errors on the functional layer
– Add error injection to the autonomic layer
igh-level simulation model of failures at all locations

– Model failures of independent components
– Model failures of dependent components
– Classify errors (no error, wrong output, deadlock, …)
ssess resulting ASoC dependability



bustness of the Autonomic Layer

Monitors to monitor the autonomic layer
Es will supervise both FE and neighboring AEs
oftware monitoring task verifies AE functionality

.

.

.

CPU



sts of Emergence

heoretical analysis of XCS
– Minimum number of classifiers?
– Necessary duration of learning at design time?
– Upper bounds on duration of self-optimization at run time?
– Necessary rule-update frequency at run time?
valuate two further rule-based decision systems

– ARON (in cooperation with Prof. Brockmann)
– X-TCS (semi-Markov to solve timing problem)
reliminary results

– Predict number of necessary classifiers and learning time
– Level of knowledge of the goal has significant impact on 

complexity



tisfying Hard Constraints

iolating soft constraints leads to performance 
egradation.
iolating hard constraints could lead to system failure.



oC Prototype

Real-world applications running on Leon3-based 
rototype:
– Networking (Varying packet rate, type and size)
– Video Processing (Video frames > 300 kB @ 25 frames/sec)
erify that the ASoC FPGA prototype performs self-
ptimization, self-correction and learning.



operations

eam of Prof. Reif
– Verification of self-x 

properties based on logic 
model

– Tools for reliability 
estimations

eams of Prof. Müller-
chloer / Prof. Schmeck

– LCS concept and 
implementation

eam of Prof. Maehle / 
rof. Brockmann

– Cooperation on HW/SW 

• Team of Prof. Ernst
– Interested in reliability 

estimation
• DodOrg Karlsruhe

– Organic Middleware
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Interconnect

rovides an interconnect between the AEs in order to 
ermit IPs status exchange and therefore global 
ptimization
E interconnect:

– AE interconnect is independent from FE interconnect
– Serial ring architecture

• Simple in comparison to other buses (AMBA, PLB..)
• Suffices requirements (bandwidth, latency)
• Optimized version of serial ring (add control bits in order to simplify logic and save 

registers)

mplementation results
2 bit ctrl + 1 bit data 2 bit ctrl + 4 bit data

esources 246 slices 300 slices

t N * (L N) N * (L/4 N) N b f d



Hardware Software

me
� No hardware available
� Simulation based only
� Previous generations of an autonomic system can be 

used to collect data for further design cycles

� Design tools such as ASoCsim running offline
� Full XCS implementation for best possible learning 

capabilities
� Generation of rules to be used at run time
� Determination of parameters to be used in system 

(number of cores, protection scheme, size of classifier 
population, etc.)

me � Learning classifier table as reinforcement learning 
algorithm optimized for hardware

� Learning through dynamic adjustment of fitness value 
as indication of rule effectiveness

� Low level monitoring of system parameters and 
immediate intervention to prevent critical faults or error 
propagation

� Organic self-x properties can be validated with an 
operational ASoC FPGA prototype

� Autonomic configuration software running on the 
system

� Long term goal specification through parameterization 
of target function (global RPP metric)

� Responsible for rule replacement in LCT hardware
� Preparation of assorted monitor signals for a potential 

autonomic middleware (not in the scope of ASoC)



elf-Organizing MPSoC

Learning Classifier Table:
 HW implementation of XCS-based 

reinforcement machine learning 
technique [Wilson95]

 Multi-conditional rules with actions 
and reward oriented fitness 
evaluation

[Zeppenfeld08]

load,     
tilization

Frequency, 
Task Migration

If (CPU util high AND f is high) then
Migrate task

Else if (CPU util high AND f is low) then
Increase f

Else if (CPU util low AND f is high) then
Decrease f

End
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