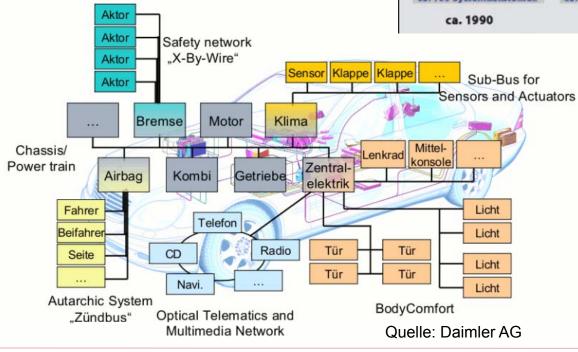


Organic Self-organizing Bus-Based Communication Systems (OrganicBus)

Tobias Ziermann, Stefan Wildermann, Prof. Dr. Jürgen Teich

Hardware-Software-Co-Design

Universität Erlangen-Nürnberg


tobias.ziermann@informatik.uni-erlangen.de

22.10.09

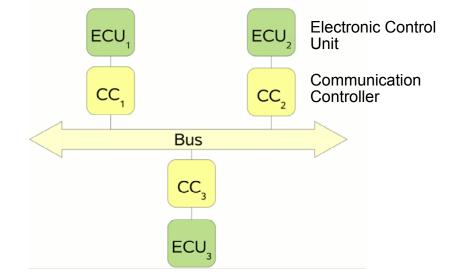
Motivation and Idea

- Increasing complexity in distributed embedded systems
- Static bus arbitration too restricted or suboptimal

Quelle: VW

 Potential for optimization through self-organizing bus systems (OrganicBus)

Agenda


Goals

- State of the art
- Roadmap
- First Milestones
- Conclusion

Goals

- Organic approach for bus-based communication systems
- Desired properties:
 - Decentralized arbitration
 - Self-organization
 - Self-healing
 - Self-optimization of bus access and traffic

- Separation of function and communication
- Reach the above properties using simple local rules
- Overcome the drawbacks of pure offline optimization

Major Goal: Increase overall Quality

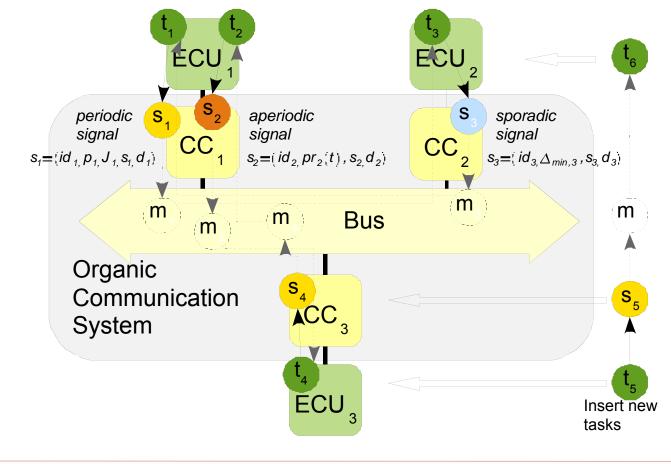
- > Typical types of messages to distinguish:
 - Hard deadline
 - Soft deadline
 - Bandwidth
- Definition of Quality (Objectives in order of relevance):
 - Satisfaction of safety critical requirements
 - Increase of number of fulfilled constraints
 - Improvement of bus utilization
 - Guarantee of fairness

Features of our Decentralized Approach

- Apply multi-agent reinforcement learning techniques
- Apply game theoretic analysis for validation of protocols
- Use observer/controller architecture to preserve real-time properties
- Simulation and real hardware implementation
- Advantages:
 - Approach flexible to system changes
 - Robust to single node failures
 - Scalable

State of the Art

- Internet uses simple decentralized mechanisms, e.g. TCP
 - Fulfill requirements
 - Difficult to predict
- Embedded performance analysis for organic computing (EPOC) [Stein, Ernst]
 - Starting from offline solution
 - Hard real-time
- Feedback scheduling
 - Control loops optimize schedule
 - Centralized scheduling mechanism


Roadmap

- 1. Definition of a system model
- 2. Game-theoretic analysis
- 3. Development and rating of algorithms
- 4. Physical simulation
- 5. Implementation on real hardware

Definition of a System Model

- Separation between application and communication
- Describe messages by properties

Game-Theoretic Analysis

- Game Theory as a formal tool to define and analyze multiagent decision problems
- > A game consists of
 - a set of **players** *N* = {1,..., *n*}
 - a set of **strategies** *S_i* available to each player *i*
 - a specification of **payoffs** for each combination of strategies
- Payoff of player i: U_i(S)
 - strategies taken by all *n* players: $\mathbf{S} = (S_1, \dots, S_n)$
 - strategy of player *i*: $S_i \in S_i$

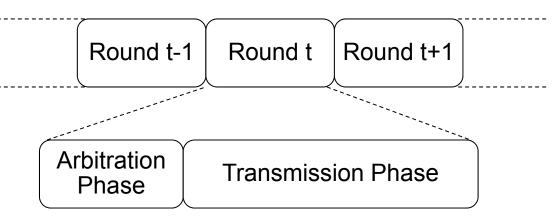
Equilibria

- Nash Equilibrium is an important characteristic to evaluate stable states in games
- When all players are selfish, a Nash Equilibrium is reached.
- Selfish players try to maximize their own payoff.
- No player achieves a higher payoff when choosing another strategy than his current strategy, when the other players keep their current strategies

Medium Access as 2-Player Game

- Models contention phase of medium access where users content for medium access.
- Players have the strategies {send, wait}
- The payoff is
 - 1, if granted access to the medium
 - 0, else

Contention-based access (e.g., WLAN), Analysis in [1]


		Player 2	
		wait	send
Player 1	wait	0,0	0,1
	send	1,0	1,0

Priority-based Medium Access with Player 1 having higher priority

Priority-based Access Game

Arbitration and transmission phase define the rounds of the priority-based Access Game

- Mixed Strategies:
 - Not playing with discrete strategies "wait" and "send".
 - Strategies are given as a probability distribution.
- > Player *i* sends with probability p_i and waits with $1 p_i$
- > Payoff $u_i(s)$: Percentage of successfully sent messages

Unfairness of Selfish Users

Goal is to achieve a *fair bandwidth sharing*, i.e.,

$$u_1(\mathbf{p}) = u_2(\mathbf{p}) = ... = u_n(\mathbf{p})$$

- However, selfish behavior leads to unfair bandwidth \succ sharing and blocking of users with low priorities.
- **Example:** 2-Player case

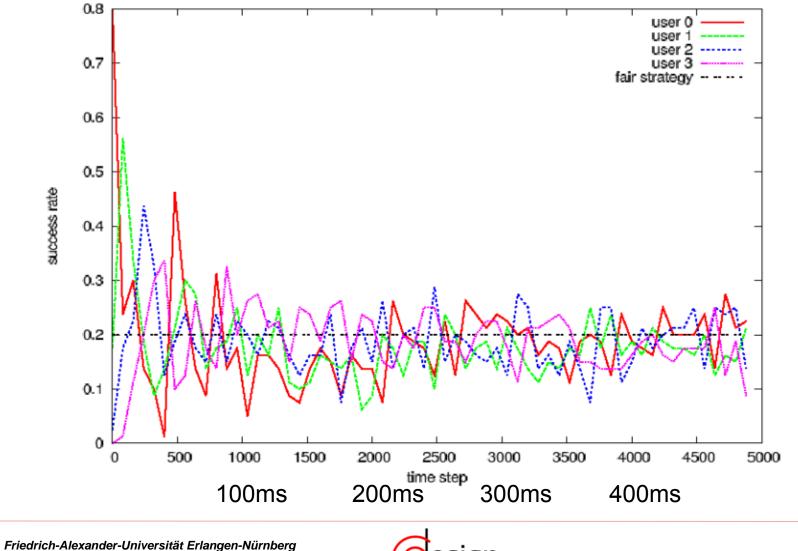
Player 2

Strategy "send" dominates strategy "wait" for Player 1

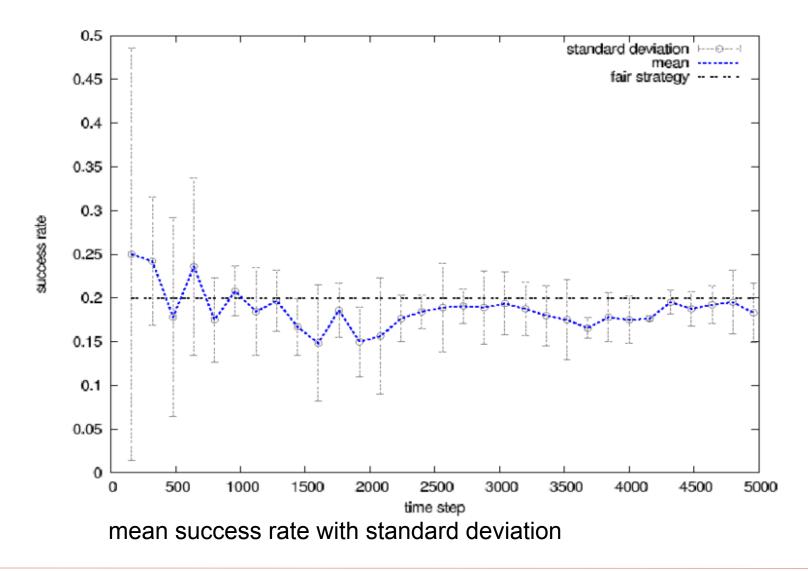
- \rightarrow Player 1 always chooses "send"
- \rightarrow Player 2 never sends

Enhancement to reach Fairness

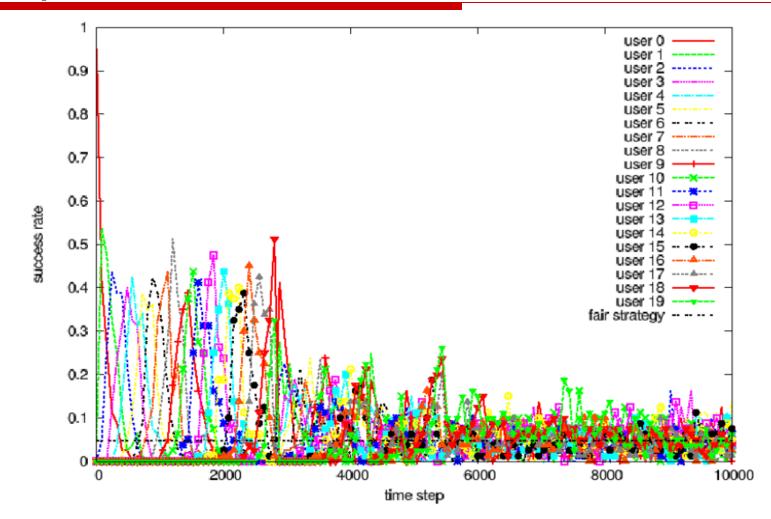
- > Main problems:
 - Users with low priorities cannot influence users with higher priorities.
 - Users with high priorities do not realize when blocking an user with lower priority.
- Idea: Demand that a small amount ε of the available bandwidth stays free.
- > Payoff $u_i(\mathbf{s})$:
 - If sum of sending probabilities is less then 1- ε then percentage of successfully sent messages
 - Else 0


Analysis of the Nash Equilibrium

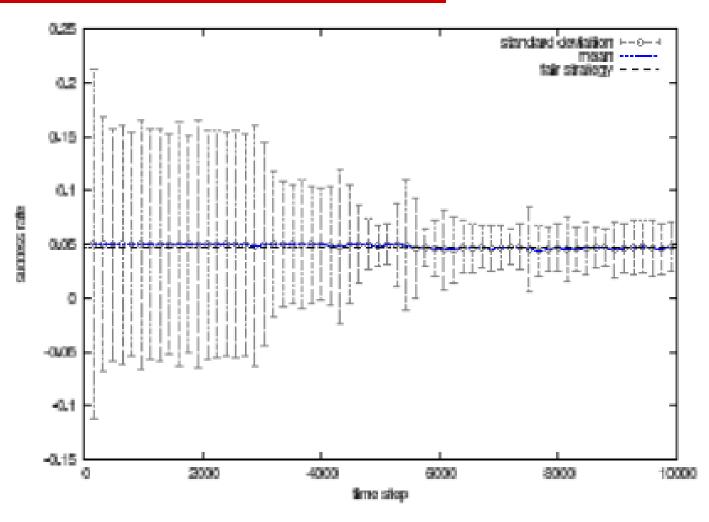
- > It can be shown that a fair bandwidth sharing is one Nash Equilibrium of the enhanced game: $u_1(\mathbf{p}) = u_2(\mathbf{p}) = \dots = u_n(\mathbf{p}) = \frac{1-\varepsilon}{r}$
- This means, it is possible to design a self-organizing system for fair bandwidth sharing.
- However, the Nash Equilibrium is not a unique one.
- Providing a Multi-Agent Reinforcement Learning algorithm to lead the system to a fair strategy


Experimental Results – 4 Users

Success rates (= bandwidth used) of 4 Players and ϵ = 0.2



Experimental Results – 4 Users


Experimental Results – 20 Users

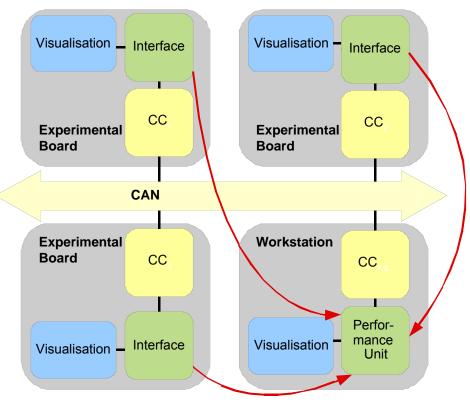
20 Players and ε = 1/21. Mean success rate and standard deviation.

Experimental Results – 20 Users

20 Players and ε = 1/21. Mean success rate and standard deviation.

Roadmap

- 1. Definition of a system model
- 2. Game-theoretic analysis
- 3. Development and rating of algorithms
- 4. Physical simulation
- 5. Implementation on real hardware


Physical Simulation

- First step towards real implementation
- Analyze overhead of communication protocol
- Consideration of asynchronous communication with Controller Area Network (CAN)

Implementation on Real Hardware

- Implementation of organic bus arbitration algorithms on FPGA-boards
- Connecting boards and workstation via CAN
- Additional point-to-point connections for debugging purpose

Conclusions

- Steps to achieve Organic Self-organizing Bus-Based Communication Systems:
 - Theoretical foundation (game theory)
 - Models and learning techniques
 - Real hardware implementation

Thanks for your Attention

- Project page:
 - www12.informatik.uni-erlangen.de/research/organicbus/
- Contact:
 - Tobias Ziermann
 - tobias.ziermann@informatik.uni-erlangen.de
 - www12.informatik.uni-erlangen.de/people/ziermann

Online Protocol for Adaptive Agents

- Collect local information by observing the environment, i.e., the shared medium, for some rounds.
 - SuccessRate: the rate of successfully arbitrating the medium
 - *ContentionRate*: the rate the medium was not free
- Update the sending probability using a learning algorithm:
 Let Δ be the change of the probability

IF ContentionRate > 1 - ε **THEN**

// Coordination behavior behavior

 Δ = -SuccessRate;

ELSE

// Payoff maximization behavior

Apply weighted policy learning algorithm inspired by [2];

END IF

References

- [1] Sudipta Rakshit; Guha, R.K., "Fair bandwidth sharing in distributed systems: a game-theoretic approach," *Computers, IEEE Transactions on*, vol.54, no.11, pp. 1384-1393, Nov. 2005
- [2] Abdallah, S. and Lesser, V. 2006. "Learning the task allocation game," Proceedings of the Fifth international Joint Conference on Autonomous Agents and Multiagent Systems. AAMAS '06. ACM, New York, NY, 850-857.

