

Coordination and delegate MAS in large-scale distributed control applications

Prof. Tom Holvoet DistriNet labs Dept. of Computer Science KULeuven, Belgium

Overview

1. Delegate MAS: BDI through the environment

Tom Holvoet, Paul Valckenaers LNCS - Environments for MAS 2006 Alexander Helleboogh, Danny Weyns, Tom Holvoet, Rutger Claes ITS Conference 2007 IEEE Journal on ITS (submitted)

2. "Using Equation-Free Macroscopic Analysis for Studying Self-Organising Emergent Solutions"

> Giovanni Samaey, Tom Holvoet, Tom De Wolf IEEE Conf. on Self-Adaptation and Self-Organisation (SASO'2008) Venice, Italy

Multi-agent systems

➤What is an agent?

A computer system situated in some environment that is capable of autonomous actions in the environment in order to achieve its design objectives¹

≻What is a MAS?

- A set of interacting agents
- Example application areas
 - E-business
 - Logistics, manufacturing control
 - Intelligent traffic systems

¹ Wooldridge M. Agent-based software engineering. Software Engineering 144, 1997 **LEUVEN** DistriNet RESEARCH GROUP

MAS are in essence

- a solution strategy
- a basis for a software architecture
- for distributed problem solving
- embedded in an environment
- that is inaccessible, non-deterministic and dynamic

"systems designed to cope with dynamics"

 \rightarrow "Agents are <u>99% computer science</u>, and 1% AI."

• NOT FOR FREE !

"owning a hammer does not make one an architect"

Agents

 \rightarrow <u>agents</u> need to integrate different behaviour aspects:

reactive

reacts to stimuli (changes in env., communication, ...)

autonomous

does not require user interaction

proactive

aims to achieve its own goals, therefore initiates appropriate actions

social

cooperates / coordinates / communicater

embodied

situated in the environment

mobile

DistriNet

moves around network sites

Agent architectures

1. Deductive reasoning agents

- □ 1956 present
- "Agents make decisions about what to do via <u>symbol manipulation</u>. Its purest expression, proposes that agents use <u>explicit logical reasoning</u> in order to decide what to do."

2. Reactive / behaviour-based agents / situated MAS

- □ 1985 present
- "Problems with symbolic reasoning lead to a reaction against this lead to the <u>reactive agents</u> movement."

3. Practical reasoning agents

- □ 1990 present
- "Agent use <u>practical reasoning</u> (towards actions, not towards beliefs) beliefs / desires / intentions."

4. Hybrid agents

- □ 1989 present
- □ *"Hybrid* architectures attempt to **combine** the best of reasoning and reactive architectures."

Practical Reasoning Agents

• BDI - a theory of practical reasoning – [Bratman, 1988]

 \rightarrow for "resource-bounded agent"

\rightarrow Core concepts

- Beliefs = information the agent has about the world
- Desires = state of affairs that the agent would wish to bring about
- Intentions = desires (or actions) that the agent has committed to achieve

Delegate MAS: BDI through the environment

Coordination and Control Applications

family of applications, characterized by

- control application
 - underlying (physical or software) system that needs to be controlled
 - resources static entities
 - mobile entities
 - on top: software system to "control" the underlying system
 - different order of magnitude of evolution speed
- task-oriented application domain
 - a task entails moving through the environment (mobile entities) and performing operations using resources (static entities)
- Iarge / huge scale
 - number of entities
 - physical distribution
- very dynamic nature
 - resources / connections / tasks

- examples
 - traffic control
 - □ AGV-based warehouse management
 - □ inland shipping
 - □ manufacturing control
 - □ supply chaing mgt
 - □ web service coordination

Solution?

<u>Centralized appraoches</u>

- \rightarrow consider the problem to be an <u>optimisation</u> problem
- \rightarrow operations research / static and dynamic
- \rightarrow feasibility ...?

Solution?

<u>Centralized appraoches</u>

 \rightarrow ...

Distributed approaches

- \rightarrow local decision makers, which cooperate / coordinate...
 - vehicles / roads
 - traffic lights / ...

 \rightarrow crucial problem remains: deal with scale and complexity

Solution?

Distributed approaches

 \rightarrow crucial problem remains: deal with scale and complexity

\rightarrow compromises ...

- hierarchical models
 - e.g. based on geographical characteristics...
 - compromises on flexibility, performance, complexity
 - e.g. 2-level distribution... [Klaus Fischer '95]

pure decentralization

- simple local rules + rely on emergence
- compromise on optimality [Tamas Mahr '08]

• What is at the heart of the problem...

- \rightarrow **local** decision makers
- \rightarrow require **global** information for adequate decision making

- \rightarrow **local** decision makers
- → find/isolate only that global information that is directly relevant for adequate decision making

Delegate MAS

- Reference model for Coordination and Control applications
 - \rightarrow Decentralized components / agents
 - \rightarrow Environment-centric coordination model

Vehicle Agent (cont.)

Vehicle agent

- \rightarrow overall "goal":
 - fulfill task
 - by moving over resources in some correct sequence
 - fulfilling expected timing and quality requirements of the task

\rightarrow BDI – Beliefs–Desires–Intentions

- beliefs
 - resources
 - possible (feasible) paths for reaching resources
 - other task agents ?
- desires / options
 - several paths through the infrastructure / resources
- Intention
 - a chosen path

Coordination model

- Basic entities in place
 - \rightarrow environment
 - \rightarrow infrastructure agents
 - \rightarrow vehicle agents
- Now the system should support agents <u>fulfilling tasks</u>
 - tasks are trips to destinations
- ...taking timing and quality requirements into account...
 - minimize travel time
 - avoid traffic jams
 - •
 - \rightarrow all this in an environment that <u>changes</u> constantly ... and in which task agents enter the system constantly ...

Task agents

 \rightarrow how ? <u>first alternative</u>:

task/vehicle agent responsible for gathering, reasoning upon and distributing information

- about resources / roads
 - topology
 - capabilities / quality / ...
 - expected schedule
- about paths
 - find out feasible routes
 - contact resources on paths judge on the quality of these paths
- about intentions
 - communicate own intentions to other agents
 - negotiate with other agents to align all agents' intentions
 - reserve resources if suitable

 \rightarrow how ? <u>first alternative</u>:

task/vehicle agent responsible for gathering, reasoning upon and distributing information

all this in an environment that <u>changes</u> constantly ... and in which task agents enter the system constantly ...

complex

Task agents – BDI ?

 \rightarrow how ? <u>second alternative</u>:

exploit environment to relief task/vehicle agents ...

→ <u>delegate MAS</u>

- have simple, small-scale agents (ants) roam environment and enrich environment with valuable information
 - optional paths
 - intentions
- align intention with intentions of other task agents
 - through resource agents
 - through refresh

Delegate MAS: Ant-based Coordination and Control

 \rightarrow three kinds of delegate MASs

Exploration ants
Intention ants
(Feasibility ants)

 Ant agents
 Pheromone deposition spaces attached to each resource/enty/exit ! evaporation and refresh

Prototype: Experiments

39

Conclusion

- Delegate MAS reference model
 - \rightarrow core abstractions
 - environment
 - task/vehicle agents basically BDI
 - resource/infrastructure agents
 - \rightarrow coordination model
 - environment centric
 - light-weight 'ants' + pheromones
 - bring relevant global information to local task agents spread relevant global information through environment
 - \rightarrow cope with dynamics

Conclusion (cont.)

- Exploration delegate MAS
 - use the environment to find out the quality of different options

task agents do not need to directly contact and negotiate with resources

Intention delegate MAS

• use the environment to propagate intentions through the environment

task agents do not need to maintain beliefs and reason upon the intentions of other agents' for coordinating over resources

➔ reduced complexity of task agent architecture

Many challenges / Open Issues

- There's a cost ...
 - additional infrastructure
 - open resources
 - computational/communication cost
 - needs to be managed properly!

suitable refresh rate, cloning budgets, hop limits

- Emergent behaviour / qualities
 - → … ?
 - \rightarrow purely selfish agents sufficient for overall optimization ??
 - \rightarrow homogeneous or heterogeneous?
- Many parameters
 - \rightarrow tune ? adaptive strategy ?
- Coordination between resources
- BDI architecture
- Resource agent architecture
- ...

Current / Future Work

• Evaluation / Validation

- \rightarrow MASE project large scale microscopic traffic simulations
- \rightarrow Float line cold end
- \rightarrow Inland shipping?
- \rightarrow PDP-TW

Interested? There is a **vacancy**...

Using Equation-Free Macroscopic Analysis for Studying Self-Organising Emergent Solutions

SASO'2008

Giovanni Samaey Tom Holvoet Tom De Wolf

- Numerical analysis group
- DistriNet labs
- DistriNet labs

Overview

- Problem: how to evaluate SO-em solutions
 - \rightarrow Illustrated on a case
- Iterative approach to studying SO-em solutions
 - \rightarrow Principle
 - \rightarrow Equation-free analysis
 - \rightarrow Illustration / case
 - \rightarrow Discussion / challenges
- Conclusion

A simple case: data clustering

- Requirements
 - \rightarrow Functional: clustering data in a 2D grid
 - \rightarrow Non-functional: open, ...

- Architecture
 - \rightarrow MAS: 2D grid world, inhabited by autonomous agents
 - → Agents follow ants' brood sorting behaviour
 - Simple rules:
 - Agents pick up data and drop it (with probability P) if in neighbourhood (8 units view range) of other data items (3)
 - Self-organizing emergent solution

Decentralized data clustering...

- \rightarrow Evolution of the number of clusters
 - Avged over 100 simulations from random initial conditions

Decentralized data clustering...

- Avg cluster size is 1.6...
 - \rightarrow How come?
 - \rightarrow Can we fix the solution to get better results?
- Now what?
 - \rightarrow We need to better understand how this solution works...
 - \rightarrow Where does the global behaviour come from?
 - \rightarrow How do local actions lead to this global behaviour?

• How to evaluate a SO-em solution?

- How to evaluate a SO-em solution?
 - \rightarrow If you can derive a <u>mathematical model</u> analytically: OK!
 - In many, real 'engineered' systems, you cannot derive such a model...

- How to evaluate a SO-em solution?
 - → If you can derive a mathematical model analytically: OK!
 - In many, real 'engineered' systems, you cannot derive such a model...

\rightarrow Pure <u>simulation</u>

- Simulate

 what will you analyse?
 - Ok for *observing* what the macroscopic behaviour is...
 - Less ok for *evaluating* the solution.
 - How to proceed if results are not satisfactory?

 \rightarrow ...

- How to evaluate a SO-em solution?
 - → If you can derive a <u>mathematical model</u> analytically: OK!
 - In many, real 'engineered' systems, you cannot derive such a model...

\rightarrow Pure <u>simulation</u>

- Simulate

 what will you analyse?
 - Ok for *observing* what the macroscopic behaviour is...
 - Less ok for *evaluating* the solution.
 - How to proceed if results are not satisfactory?
- → We would like to have a <u>disciplined approach</u> to grasp an understanding of SO-em solutions... which can help make supported claims about macroscopic behaviour and which can help improve the solution
 ♥ DistriNet

Solution: how to proceed...

- An iterative, bottom-up approach...
 - → Based on a procedure that tries to identify, step by step, a minimal set of macroscopic variables U that completely and 'uniquely' characterise the SO-em behaviour
 - Necessary and sufficient set of macro-variables
 - → Finding necessary and sufficient macro-variables is only a <u>tool</u>, not the <u>goal</u>
 - → It may not be achievable, but it's about the ride, not about the destination
- The approach
 - \rightarrow ... does <u>not tell</u> you what the micro-macro relation is
 - \rightarrow ... but <u>helps</u> or <u>guides</u> you in your <u>study</u> to understand the relation

An iterative approach... the data clustering example

- Microscopic state:
 - \rightarrow Data items: position
 - → Agents:
- , position direction carrying data or not

- Iteratively attempt/evaluate set of macro-variables + initialisation operator
 - \rightarrow Macro-variables via aggregated state
 - \rightarrow Initialisation operator fills degrees of freedom

An iterative approach... initial attempt

- Initial attempt
 - \rightarrow <u>Aggregated state</u> U₁
 - Clusters: number position of center size
 Agents: number of agents carrying data
 - \rightarrow <u>INIT</u>:
 - Clusters: clusters, same center position, exact positions of data items randomized
 Agents: carrying → next to a data item, others random pos.

An iterative approach... initial attempt

- Initial attempt
 - \rightarrow <u>Aggregated state</u> U₁
 - Clusters: number position of center size
 - Agents: number of agents carrying data
 - \rightarrow **INIT**:

 Clusters: 	clusters, same center position,
	exact positions of data items randomized
Agents:	carrying \rightarrow next to a data item, others random pos.

Evaluation:

The avg number of clusters decreases more slowly U is IN-sufficient to accurately determine overall system evolution

ipt <u>state</u>
number position of center size
number of agents carrying data
clusters, same center position, circle shaped, 10% vacant positions , exact positions of data items randomized
carrying \rightarrow next to a data item, others random pos.

A periodic reinitialisation (every 1000 steps) did not alter macroscopic evolution So: all macro-behaviour is contained in our initial set of macro-variables U is sufficient to accurately determine overall system evolution

An iterative approach... second attempt

Gained insight:

the number of clusters decreases faster if there are *vacant places* in the clusters and if the clusters are *circular*.

Evaluation:

A periodic reinitialisation (every 1000 steps) did not alter macroscopic evolution So: all macro-behaviour is contained in our initial set of macro-variables U is sufficient to accurately determine overall system evolution

Evaluation:

U is IN-sufficient to accurately determine overall system evolution

An iterative approach... fifth attempt

Gained insight:

the number of clusters decreases faster if there is a large difference in size and if the clusters are closer to each other

An iterative approach... nth attempt

 \rightarrow ...

Discussion/challenges: data clustering

With respect to the concrete case of data clustering

- \rightarrow Simple algorithm, yet not obvious to grasp the effect
- → Gained insights in self-organising, emergent solution
 - *the presence of vacant positions is a driving force for clustering*
 - the number of clusters decreases faster if there is a large difference in size
 - the number of clusters decreases faster if the clusters are closer to each other
- → Helps to evaluate the proposed 'architecture'
- → Inspire improvement
 - Making agents more aware of cluster location (e.g. thrallough digital pheronomes)
 - Agents drop data item with higher probability in neighbourhood of large cluster

•

Discussion/challenges: the approach

- \rightarrow Recall: the <u>approach</u> is an approach...
 - Which does <u>not tell</u> you what the micro-macro relation is
 - But which ONLY <u>helps</u> or <u>guides</u> you in your <u>study</u> to understand the relation
- → Critical notes:
 - It does not say WHICH macro-variables should be chosen
 - In the example:
 - One emergent... e.g. clusters (→ identify observable artefacts)
 - Rest: aggregation/abstraction through statistics (avg, variance)
 - Designing an initialisation operator becomes increasingly hard!
 - Parameters must be chosen wisely
 - Initial transient
 - Reinitialisation period
 - Short enough to be efficient (large simulations)
 - Long enough to pass transient effects

Conclusion

- Understanding SO-em behaviour is necessary but hard...
 → Evaluation / improvement of software architecture
- Iterative EFA-based approach gives some guidance
 → More research needed!

Overview

1. Delegate MAS: BDI through the environment

Tom Holvoet, Paul Valckenaers LNCS - Environments for MAS 2006 Alexander Helleboogh, Danny Weyns, Tom Holvoet, Rutger Claes ITS Conference 2007 IEEE Journal on ITS (submitted)

2. "Using Equation-Free Macroscopic Analysis for Studying Self-Organising Emergent Solutions"

> Giovanni Samaey, Tom Holvoet, Tom De Wolf IEEE Conf. on Self-Adaptation and Self-Organisation (SASO'2008) Venice, Italy

Conclusion

• SASO'2009

Third International Conference on Self-Adaptive and Self-Organizing Systems San Francisco, California, September 14-18, 2009

The topics of interest:

- * Control of emergent properties in self-* systems
- * Biologically, socially, and physically inspired self-* systems
- * Management and control of self-* systems
- * Self-organization
- * Self-adaptation
- * Other self-* properties (self-management, self-monitoring, self-tuning, self-repair, self-configuration, etc.)
- * Theories, frameworks and methods for self-* systems
- * Robustness and dependability of self-* systems
- * Approaches to engineering self-* systems
- * Applications and experiences with self-* systems

Conclusion

• SASO'2009

Third International Conference on Self-Adaptive and Self-Organizing Systems San Francisco, California, September 14-18, 2009

research papers	(April 8)
posters	(April 23)
tutorials	(April 30)
workshops	(??)
	research papers posters tutorials workshops

Overview

1. Delegate MAS: BDI through the environment

Tom Holvoet, Paul Valckenaers LNCS - Environments for MAS 2006 Alexander Helleboogh, Danny Weyns, Tom Holvoet, Rutger Claes ITS Conference 2007 IEEE Journal on ITS (submitted)

2. "Using Equation-Free Macroscopic Analysis for Studying Self-Organising Emergent Solutions"

> Giovanni Samaey, Tom Holvoet, Tom De Wolf IEEE Conf. on Self-Adaptation and Self-Organisation (SASO'2008) Venice, Italy

