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Learning to look at humans -

what are the parts

of a moving body?

Abstract

We present a system that retrieves planar models of clothed, non-
rigidly moving human limbs from given video input in a fully au-
tonomous manner. This is achieved by combining and extending
state-of-the-art algorithms for tracking, clustering and probabilistic
image segmentation, allowing them to self-adapt to the processed
footage. Application of our system to video sequences of humans
yields precise limb templates, which trace well the true body struc-
ture of the captured performer.

1 Motivation

Despite considerable effort creating an artificial system capable of analyzing
human body pose and motion is still an open challenge. Such a pose esti-
mation system (PE-system) would enable machines to communicate with their
users in a more natural way (body language interpretation) or to survey ac-
tivities of individuals to anticipate their intentions (traffic/security). Existing
PE-Systems are by far no match for the human brain when it comes to the
task of motion and pose estimation, let alone behavior interpretation. These
systems are narrowly tuned to their field of application and work with relatively
inflexible, pre-defined models of human shape and motion. In our project, we
attempt to create a PE-System which initially has no idea of its environment
and the humans inhabiting it. Instead, it should gather knowledge during its
lifetime and build up its own environmental and human model, like the hu-
man visual cortex does at some time in its development. For this, we combine
state-of-the-art computer vision techniques and biologically inspired principles
like (controlled) self-organization and machine learning.

2 Salient region detection

To get an idea of ’where to look’ for the captured human body in a given video
input sequence, our system performs fully autonomous two-phase salient region
detection. In phase one, a sparse, yet precise description of the sought-after
foreground shape is found by employing frame-differencing techniques.
For the frame displaying the highest activity potential (the reference frame ,
exemplary depicted in fig. 1), phase two fleshes out this initial foreground es-
timate using the advanced graph cut -based pixel classification scheme of [1].
The resulting, high-quality foreground proposal map is depicted in fig. 2 (green
layer).
Via simple image processing techniques, an additional static background pro-
posal map is set up, comprising exclusively image regions that show no motion
throughout the complete input sequence (indicated in fig. 2, yellow layer).
Eventually, the salient region detection process comes up with a non-static
background proposal map (fig. 2, red layer). This map is defined on all image
regions which are truly part of the background, yet are occasionally obscured
by the foreground subject.

Figure 1: Reference frame

Figure 2: Proposal maps

3 Feature placement and tracking

Based on the results of salient region detection, body motion is followed via
sparse feature tracking . Features to be tracked are plain image patches. Using
the above proposal maps as a guidance, foreground features are distributed rel-
atively dense on the interesting foreground shape, while the static background
is only sparsely sampled. The non-static background areas are kept a void
space; features placed there would show unpredictable tracking behavior.

The resulting feature placement is shown in fig. 3, foreground features are
indicated by yellow dots, background features are shown as blue dots.

Figure 3: Feature initialization

Tracking the resulting large feature set over all input frames requires a fast
and robust tracking framework. For our purposes, the method of [2] turned
out appropriate; the feature trajectories resulting from the tracking process are
shown in fig. 4.

Figure 4: Tracking results, using the scheme of [2]

4 Coherent motion segmentation

As human limbs move as monolithic entities, limb retrieval can be adressed
by finding coherently moving feature clusters. For this, we employ spectral
clustering techniques: endowing the normalized cut mechanism of [3] with the
self-tuning capabilities proposed by [4], our segmentation framework reliably
segments the single body parts (limb proposals ) without human intervention
(see fig. 5).

Figure 5: Results of self-tuning spectral clustering

5 Skeleton construction

Given the limb proposals, it is straightforward to infer the kinematic structure
of the captured body. Possible joint candidates are allocated via techniques
proposed by [5], assuming the sought-after skeleton to be tree-like. Results
of the skeleton extraction stage are depicted in fig. 6; identified joints are
indicated by green dots, skeleton ’bones’ are shown in white.

Figure 6: Skeleton retrieval

6 Refining limb models

Obviously, the sparse limb proposals give only a rough impression of the true
limb shape. To arrive at more detailed limb models , fleshing out these sparse
representations becomes inevitable. To do so, we employ, similar to [5], a
Markov Random Field (MRF)-based pixel labeling scheme. The limb proposals
herein serve as seed inputs, and are used to build combined motion, shape and
appearance model of the sought-after body parts. These models constitute
the basis for the class conditional probability of the underlying MRF, thereby
enforcing the created limb templates to stay in accord with image observations.
The MRF prior probability is chosen equal to the Potts model (cf. [6]), favoring
spatial coherence of the refined body parts. Eventually, the MAP probability
estimate of the MRF yields the required, densified limb models. Performing
MAP-MRF estimation can be done in a variety of ways [7], we here modify the
approach presented by [5]. Running our refinement scheme on several selected
training sequences gives the results depicted in fig. 7.

Figure 7: Results of limb refinement

7 Discussion

Observing the precision of the obtained limb models, we plan to combine them
via kinematic constraints encoded in the skeleton graph; this yields full-fledged
upper human body models which can in turn be matched against previously
unseen input images to perform posture analysis. Beyond that, we would like
our system to learn conceptual models of the human body. Therefore, it will
be necessary to combine information from several exemplar models into a more
generic meta model . This new model has to selectively emphasize charac-
teristics common to all human individuals. Such characteristics might include
similar face or hand color, head shape or body joint limits. Using the meta
models, performance of posture estimation in novel situations is deemed to
significantly increase.
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