INSTITUTE OF
COMPUTER AND
NETWORK ENGINEERING

Safe Evolution
in Real-Time Systems

Moritz Neukirchner, Steffen Stein, Rolf Ernst
{neukirchner|stein|ernst}@ida.ing.tu-bs.de

¢ In-Field updates

 Increasing share of invention (only) in software

» Exploding configuration space

Challenges

¢ Component/System Variability
* Aging effects
* Addition/Removal of System components

Design Complexity

* More functionality

* Diverse system variants

® Third-party integration
 Increasingly networked systems

« Complex changing timing behaviour
« Timing properties specific to individual systems

Contracting Procedure:

* An Update Controller, which may reside at an arbitrary position in
the System, distributes the application model to all CPUs that are

affected by the request

* Model Management evaluates feasibility of the request based on its

model and existing contracts

* In case of acceptance the contract is closed and stored in the

Contract Repository

* The Update Manager distributes the program code to the

corresponding CPUs

* Task Management schedules the code for execution based on their

contracts in the repository

Contract interface.
_________ e

Model Contract
Optimization model Negotiation
metrics

metrics_ s
‘model
—
Contract
Reposito

Model domain

Application code &
model

Contatinterface [| ______

contract

Model domain

Model domain: Execution domain:

Contract Negotiation: Contract Enforcement:

* Protocol Handler for communication .
with Update Controller

¢ Inserts model into Analysis
component and evaluates results

Model Analysis:

¢ Performs model based distributed
performance analysis

applications
if applicable alters contract

Sets execution parameters according
to contracts in the Contract Repository
In case of contract violations alters ','
system configuration to isolate
misbehavior and protect remaining

Separation of domains:

System architecture is separated into two domains:

Model domain & Execution domain

Model domain performs worst-case performance analysis based on
formal methods to ensure system feasibility at all times

Execution domain enforces parameter settings based on contract
information and detects deviation from specified behavior
Advantages:

Decoupling of analysis and execution -> analysis has minimal
influence on application execution

System optimization and analysis can be performed during processor
idle times

ey configuration

— 3
Contract
Reposito

contract

Contract
Enforcement

violation

Contract
Supervision

execution
metrics

Execution domain

Model Optimization: information for new analysis

« Modifies system model based on Contract Supervision:
analysis metrics to optimize + detects anomalous application
configurations behaviour

* Multi-objective otimization * monitors hardware performance

The Contracting Protocol in the Model domain

1. The Update Controller distributes the annotations to the Contract
Negotiation components of all RTE instances affected by the update.

2. Each Contract Negotiation component stores only a partial model in its

local Contract Repository.

3. The Contract Negotiation components store the received Model in the

Model Analysis components.

4. An application wide synchronization ensures model consistency across

the distributed system.
5. The Model Analysis components analyze the system

Protocol

Contractin

Model
Analysis

Contract
Negotiation

Update
Controller

Contract
Enforcement

Contract
Repository

Annotations

1. Annotations
3. Model
|

Application wi
> 5. Analysis

6. Evaluation

| 2. Store Test

e synchronisati

=]

ion 7. Application wide synchronisation

distributedly and cooperatively.

6. Analysis results are reported to the Contract Negotiation components

for evaluation.

7. Consistency of the analysis results is ensured in another synchronization

step.

8. The analysis result is reported to the Update Controller. It case of

feasibility it can start the distribution of the application.

9. Code
8.0K

10. Application wide synchronisation

11. Parameters

12. Task

13. Done Configuration

14. Done
e

The Contracting Protocol in the Execution domain

9. The Update Controller distributes the program code of the application to

the appropriate resources.

10. In an application wide synchronization the system assures that the code

has arrived at all affected resources.

11. The Contract Enforcement components read the execution parameters
of the application from the contracts, that are stored in the Contract
Repository instances.

. All Contract Enforcement components start execution of the new or
updated application with the appropriate parameters from the
contracts.

1

N

13. The Contract Enforcement components report successful enforcement
of the configuration change to the Update Controller.

14. The Update Controller notifies the Contract Negotiation components of
the completion of the update process to allow the next configuration
change.

From Self-Protection to Self-Confi

The Model Domain has been extended by a distributed
model-based optimization component to close an Observer
Controller loop.

As a result updates do not have to be rejected in case of
infeasibility. Instead the framework modifies the system
model to evaluate parameter changes. Thus the system can
search for feasible configurations, providing a self-
configuration service.

Model domain

The self-configuration service has been implemented for the
demonstrator and has proven to find priority assignments
that allow acceptance of system changes that would have
been rejected otherwise.

The implementation of the model-based optimization is low
in overhead and thus blends perfectly into the overall
framework concept.

supported by DFG SPP 1183 Organic Compu

