
H.-U. Heiß, J. Richling, H. Parzyjegla, D. Graff
Berlin Institute of Technology

Model-driven Development of
Self-organizing Control Applications (MODOC)

T. Weis, A. Wacker, S. Schuster, S. Holzapfel
University of Duisburg-Essen

G. Mühl, N. Jeremic
University of Rostock

No global knowledge
• Peers must determine their Voronoi cell

with local knowledge only
• Algorithms for constructing Voronoi diagrams

are well known, but rely on global knowledge
• Self-organization is required, i.e., achieving a

global property (Voronoi diagram) based on
local interactions only

No central solution
• All peers are equal
• No administrator, maintainer or any other

centralized authority
• Cooperative algorithm required

Churning of peers
• Peers can enter and leave the overlay anytime
• Many peers leave without closing their ‘gap’
• Overlay repair required? How to repair?

How to detect that repair is necessary?

Self-stabilization
• No need to detect that repair is required
• Recover from any distortion of the overlay
• Only limitation: Overlay must be connected

(path between any two peers exists)

Scenario

Model-driven Approach

Summary and Outlook

Web: http://www.kbs.tu-berlin.de/modoc E-mail: modoc@kbs.tu-berlin.de

Adaptive Event Routing
Ubiquitous computing environment
• Embedded and intelligent end-user devices

(e.g., smartphones, home automation)

Actuator/Sensor Network
• Wireless communication, gathering and

processing of sensor data within network

Distributed Control Applications
• Cooperative services based on sensors,

processing nodes, and actuators within vicinity

Goals
• Self-organizing peer-to-peer Voronoi overlay
• Self-stabilizing overlay despite of churning

Voronoi Decomposition
• Decomposition of the n-dimensional space

determined by the distance to a peer
• Each peer is the center of a Voronoi cell
• Each peer is responsible for the data

elements closest to it

Data-flow oriented modeling language
• Modeling of application logic
• Specified by application developer

Repository of self-stabilizing algorithms
• Addressing non-functional properties

(e.g., self-organization, adaptivity)
• Provided by domain experts

Model transformation
• Generation of executables
• Automatic integration of self-organization

and self-stabilization properties
• Support for multiple target platforms

Benefits for application developers
• Self-x properties for free
• Automatic heterogeneity support

Separation of concerns
• Business logic by application developer
• Non-functional properties by domain experts
• Composition by model transformation

Algorithm repository
• Self-stabilizing peer-to-peer overlay network
• Adaptive routing based on publish/subscribe

Future Work
• Detection of complex events and conditions
• Enforcement of safety constraints
• Round trip modeling to provide network

feedback to simplify debugging and profiling

Sensor Input

Type := Int

Script

out :=(2·in1+in2)/3

List

Length := 2

Actuator

Display

+ Repository of
self-stabilizing
algorithms.

M
o

d
el

 T
ra

n
sf

o
rm

at
io

n

Application model.

Executables for target platforms.

Flexible publish/subscribe communication
• Homogeneous publish/subscribe routing:

One algorithm for all edges
• Hybrid publish/subscribe routing:

Different algorithms utilized simultaneously
to combine their inherent benefits

Adaptivity by self-optimization
• Adapt routing strategy to changing conditions
• Fine-grained switching of routing algorithms

per edge and direction

Optimization goals and criteria
• Minimize notification traffic
• Reduce subscription traffic
• Minimize computation costs
Properties
• Requires no global, but only local knowledge
• Completely distributed
• Never worse than homogeneous routing

(e.g., flooding, filtering)

Discrete event simulation
• 127 nodes with increasing subscription rate

Edge-wise switching from notification filtering to flooding.

Filtering
Flooding

Self-organizing P2P-Overlay
System Model
• Peer-to-peer overlay with location-related data
• Data has n-dimensional location coordinates
• Peers have coordinates in the same space
• Example applications: Location-based services,

pervasive computing scenarios, massively
multiplayer online games

Voronoi decomposition.

Challenges

Self-stabilizing Algorithm
Algorithm basics
• Each peer learns its surrounding
� constructs its own Voronoi cell

• Each peer keeps connections to all peers
of neighboring Voronoi cells

• Non-neighboring peers are disconnected
and reconnected with a close neighbor
� assures that the overlay is not partitioned

Self-stabilization property
• Regularly gossip list of current neighbors

to neighboring cells
• If the Voronoi cell changes, start gossiping

to all connected peers

Simulation of flooding, filtering, and adaptive routing.

Time

O
ve

ra
ll

m
es

sa
ge

 r
at

es

Reconfiguration

Filtering
Adaptive

Flooding

