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Networked Embedded Sensing Research

 Protocols
 Adaptation to interference

 Programming Models
 Role assignment

 Services
 Content-based Sensor Search
 Minimally-Invasive Management

 Systems
 Body sensor networks



Motivation
 Mobile phones equipped 

with sensors and connected 
to the Internet

 Sensors published on the 
Web: state of the real world
available in real-time

Search the real world by   
its current state!

Search the real world by   
its current state!
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A Web of Real-World Places
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Web of Things
 Web presence of things, people, and places with 

real-time state information
 Web of real-world entities, not Web of sensors
 High-level states, not raw sensor data

 Searching the Web of Things
 Search for real-world entities: places, people, things, …
 by their current state: empty, hot, broken, …
 in real-time
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Searching the Real World: Examples

 Quiet picnic places at waterfront?

 Route through city avoiding traffic jams?

 Which rental station has bicycles available?

 Where are many people who share my interests?

 Which trains from A to B are not crowded?

 Where to enter train to get free seat?

 Supermarkets with short waiting queues?
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Problem: Content-based Sensor Search
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 Find sensors reading given state in real time
 Potentially huge, distributed set of candidate sensors

 More state updates than queries, push not a good idea!

 Sensor output is highly dynamic
 Indexing sensor output not a good idea!

 We need only a limited number of results at a time
 Heuristics to select good candidates!



Approach: Sensor Ranking

 Sensors create prediction model using past readings

 Prediction models are published on the Web

 Search engine periodically indexes prediction models

 Prediction models are used to rank candidate sensors

 Highest ranking sensors are read first

 Goal: Minimize the number of read sensorsQ
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System Model

 Sensor maps discrete time to a finite discrete 
set of states:

 Sensor output time series: s(ti) = vi 
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System Model (Continued)

 Prediction model maps query time and query 
value to a probability estimate:

 P(t, v): Probability that s(t) = v
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Query Resolution
Example: Quiet places at waterfront
1. Filter static (waterfront, occupancy)
2. Predict (quiet)
3. Rank
4. Read
5. Return
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 Normalized overhead for reading non-matching 
sensors

 Ranking error e(t,v)

 Top-m ranking error etop(t,v,m)
 Dito, but only first m sensors considered

Ranking Metrics

Number of non-matching sensors above last matching sensor
Rank of last matching sensor
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Ranking Metrics: Examples
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Prediction Models

 Focus on people-centric sensors
 Tend to show periodic behaviour

 Requirements
 Accurate predictions for forecasting horizons that match 

indexing frequencies (days - weeks)
 Deal with imperfect periodic behavior
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Considered Prediction Models

 Single-period prediction model (SPPM)
 Assumes single dominant period of known length 

(e.g., 1 week)

 Multi-period prediction model (MPPM)
 Assumes multiple periodic processes of unknown 

length (e.g., 1 week, 4 weeks)

 Select appropriate models at runtime
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V1

Single-Period Prediction Model (SPPM)
 Assumption: Single dominant period with length p
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 Periodic symbol
 α: symbol; p: period;  l: offset; : support

 Example: α=blue, p=2, l=1

Multi-Period Prediction Model (MPPM)
),,,(  lp
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Inferring Prediction Estimates
Query for value v=b at time t=6
1. Filter periodic symbols

 Same value:  = v
 Same phase: l  t mod p

2. P(v,t) = max 
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Adjustment Process

 Faulty/malicious sensors, inaccurate 
predictions may result in persistent 
misranking
 Individual ranking error for each sensor

 S8 ranked to low: increase prediction value
 S7 ranked to high: decrease prediction value

 Idea: adjustment term for each sensor
 Updated after each query using ranking error
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Adjustment Process: Feedback Loop
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Evaluation
 Simulation of a realistic search engine

 Periodic rebuild and indexing of models (1 week)
 Periodic queries for possible values
 Measure average ranking error

 Prediction models: Random, SPPM, MPPM
 With / without adjustment
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Evaluation: Data Sets
 MERL motion detector dataset

 50 PIR sensors in office building
 PIR output mapped to “free” and “occupied”
 With and without a “faulty” sensor

 ETH room reservation system
 7 “sensors”
 Room occupancy: “free” or “occupied”
 With and without “synthethic” multiperiod sensor 

 Bicing data set (in progress)
 350 bicycle rental stations in Barcelona
 Number of available bicycles: “no”, “few”, “many”



Average Ranking Error: MERL
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Summary
 Ubiquitous sensors connected to Internet
 Search for real-world entities by current state
 Sensor Ranking, a primitive for content-based sensor 

search utilizing prediction models
 Adjustment process to alleviate persistent inaccurate 

rankings
 Promising results on real-world data sets
 Ongoing work

 Improved ranking based on correlations
 Building a search engine
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Ads
 Act-Control-Move: Beyond networked Sensors

 Summer School, Schloss Dagstuhl, August 15-21, 2010
 www.cooperating-objects.eu/school

 IEEE SUTC (Sensor Networks, Ubiquitous & 
Trustworthy Computing)
 Conference, Newport Beach, California, June 7-9, 2010
 sutc2010.eecs.uci.eu

 SESENA (Software Engineering for Sensor Nets)
 ICSE Workshop, CapeTown, South Africa, May 3, 2010
 www.sesena.info


