OC Workshop: Architectures and Tools

DFG SPP 1183 – 10th Colloquium, February 22 in Hannover

Stephan Sigg

TU Braunschweig Institute of Operating Systems and Computer Networks www.ibr.cs.tu-bs.de/dus

Emergent radio: Project focus

Project focus

- Adaptive, autonomous, self-improving distributed adaptive beamforming in wireless networks
- Adapt parameters to environmental changes
 - E.g. noise, synchronisation speed
- Develop environment-adaptive optimisation scheme

USRP software radios

The Universal Software Radio Peripheral (USRP)

- Communication interface controlled by standard PC
- USB connected

- Hardware:
 - Altera Cyclone FPGA
 - Four A/D converter (12 Bits/sample), sample rate 64 MegaSamples/sec
- Daughterboads for various transmit/receive frequencies
 Stephan Sigg DFG SPP 1183 Organic computing 9th colloquium 3

USRP software radios

Opportunities:

- Various frequencies
- Modulation/coding arbitrary
- Computational power of standard PC
- MIMO-capable

Limitations:

- Slow processing due to communication with PC
 - FPGA-programming possible

GNU Radio Companion

Workbench to create signal processing flow graphs

- Various preconfigured blocks available
 - Signal sources/sinks
 - Modulation schemes
 - Software scope
 - Filters
- Blocks dragged to workspace

Multiplier USRP: 16.384k

untitled

_ 0 ×

Python

Python code from the GRC

- The GRC creates python code from signal-processing flowgraphs
- Further program logic added in Python

Matlab

Control USRP devices via Matlab

- Control of USRP software radios via Matlab possible
 - Developed by the Institut f
 ür Nachrichtentechnik at the Universit
 ät Karlsruhe
 - Build models in Simulink that interface with the USRP
 - Direct use of signal processing capabilities of Matlab

Software radios for OC

Direct application to OC-Applications:

- OC-communication protocols
 - Easy implementation and case study with novel protocols
 - Protocol that fosters self-organisation

Indirect application to OC-Applications:

- Equip standard PC with communication interface
 - Test of distributed, autonomous operation of nodes
 - Distributed OC-components developed and executed on standard PC
 - Communication under real-life conditions

Use cases in other OC-SPP projects?

Conclusion

Stephan Sigg

Benefits of utilising USRP-software radios for OC apps:

- Easy development and deployment
- Quick prototyping of application
- Communication under real-life conditions
- Computational power of standard PC

Questions?

Thank you for your attention.