

Organic Principles in Complex Networks

Jakob Salzmann, Dirk Timmermann

SPP 1183 Fifth Colloquium Organic Computing, 13.-14.09.2007, Lübeck

Institute of Applied Microelectronics and Computer Engineering

University of Rostock

Outline

- Project Introduction
- Adopted OC Principles (First Project Phase)
 - Role Assignment/Role Changing, Flocking
 - Scale Free Networks, Graceful Degradation
- Dynamic Events (Second Project Phase)
- Conclusion

Project Introduction (1)

Sensor Network = paradigm of a complex network

Task:

- Collect sensor data at many locations
- Transmit collected data to sink

Scenario – Environment observation:

- Forest fire surveillance
- Detection of volcanic activity
- Precision farming
- Flood protection

Project Introduction (2)

Network Properties:

- High node count
- Random node distribution
- Wireless communication

Node Properties:

- Limited transmission range
- Limited sensing range
- Limited resources

Project Introduction (3)

Typical Problems:

- Centralized control infeasible
- Network has to organize itself in an energy-aware way
- Dynamic events impact optimal network structure

Our goal:

- Increase lifetime and robustness of sensor networks using selforganized communication and organic principles
- A network "lives" completely:
 - iff phenomena still can be detected in each observed location
 - iff messages from acquiring nodes can reach the sink

Adopted OC Principles (1)

Role assignment / Role changing – Introduction

Sensor node SinkClusterhead

Role assignment

- Hierarchy
- Specialization
- Learning effects

Role changing

- Energy balance
- Resilience

Adopted OC Principles (2)

Role assignment / Role changing – Application [REI06]

Benefit: Lifetime extension by 40%

MD

Requirement: Nodes have to be able to adopt all roles \rightarrow "Flocking" strategy

Adopted OC Principles (2)

Role assignment / Role changing – Application [REI06]

Benefit: Lifetime extension by 40%

MD

Requirement: Nodes have to be able to adopt all roles \rightarrow "Flocking" strategy

Adopted OC Principles (3)

Geographical flocking – XGAF^{*} [SAL07a] * Extended Geographic Adaptive Fidelity

Goal:

 Achieve flocks in the way that each node can adopt each role in its cluster independent from its position

Idea:

 Partition the network into virtual regular cells with equal dimensions

Cell dimension depends on:

- Sensing and Transmission Range
- $R_W = min(R_S;R_T/2)$
- R_W determines maximum cell size
 Establishing a virtual grid

Possibility to save energy by switching-off all nodes but one per cell

Adopted OC Principles (3)

Geographical flocking – XGAF^{*} [SAL07a]

* Extended Geographic Adaptive Fidelity

Goal:

 Achieve flocks in the way that each node can adopt each role in its cluster independent from its position

Idea:

 Partition the network into virtual regular cells with equal dimensions

Cell dimension depends on:

- Sensing and Transmission Range
- $R_W = min(R_S;R_T/2)$
- R_W determines maximum cell size
 Establishing a virtual grid

Possibility to save energy by switching-off all nodes but one per cell

Adopted OC Principles (6)

Geographical flocking – Further research [SAL07c,SAL07d]

- Different regular cell shapes
 - Lifetime
 - Routeability

- Area to observe
 Cell borders
- Adapting cells to shapes given by localization schemes
 - Node deployment
 - Cell shapes
 - Optimal beacon range

Adopted OC Principles (7)

Scale free networks – Introduction

US airline system

- Network results from connections to preferred nodes
- Many nodes with few connections, few nodes with many connections
- Robust against random attacks

Adopted OC Principles (8)

Scale free networks – Application [SAL07a]

- Our approach:
 - Starting with the sink
 - After joining the network, nodes connect with all unconnected nodes in range

DFG 1183 Organic Computing

Adopted OC Principles (8)

Scale free networks – Application [SAL07a]

- Our approach:
 - Starting with the sink
 - After joining the network, nodes connect with all unconnected nodes in range

DFG 1183 Organic Computing

Adopted OC Principles (8)

Scale free networks – Application [SAL07a]

- Our approach:
 - Starting with the sink
 - After joining the network, nodes connect with all unconnected nodes in range

DFG 1183 Organic Computing

<u> 6</u>6,

Adopted OC Principles (8)

Scale free networks – Application [SAL07a]

- Our approach:
 - Starting with the sink
 - After joining the network, nodes connect with all unconnected nodes in range

Adopted OC Principles (8)

Scale free networks – Application [SAL07a]

- Our approach:
 - Starting with the sink
 - After joining the network, nodes connect with all unconnected nodes in range

DFG 1183 Organic Computing

Adopted OC Principles (8)

Scale free networks – Application [SAL07a]

- Our approach:
 - Starting with the sink
 - After joining the network, nodes connect with all unconnected nodes in range
- Build up a network with scale free behavior

OC,

Adopted OC Principles (8)

Scale free networks – Application [SAL07a]

- Our approach:
 - Starting with the sink
 - After joining the network, nodes connect with all unconnected nodes in range
- Build up a network with scale free behavior

<u> 66</u>.

Adopted OC Principles (8)

Scale free networks – Application [SAL07a]

- Our approach:
 - Starting with the sink
 - After joining the network, nodes connect with all unconnected nodes in range
- Build up a network with scale free behavior
- Optimizations:
 - Range Reduction
 - Limited Connectivity
 - Wait and See
- Well populated clusters become hubs

Highly populated Cluster

Adopted OC Principles (9)

Scale free networks - Results

- Emerging tree with scale free behavior
- Lifetime balancing
- Lifetime increase by 130%

Adopted OC Principles (9)

Scale free networks – Results

- Emerging tree with scale free behavior
- Lifetime balancing

MD

• Lifetime increase by 130%

Dynamic Events (1)

Network Changes

Analysis and Classification of dynamic network changes

- Spontaneous changes (unexpected failures)
- Slow continuous changes (moving nodes, energy consumption/ regeneration)
- Periodic Changes (rejuvenation)

Self-organized detection and adaptation to changed network

- Adaptation of existing network structures to new node relations
- Transfer of acquired knowledge to new nodes

Dynamic Events (2)

Environmental changes

Analysis and Classification of dynamic environmental changes

- Spontaneous changes (Moving obstacles)
- Slow continuous changes (Plant growth)
- Periodic Changes (Day-Night cycles)

Self-organized detection and adaptation to changed environment

- Adaptation to different sensing and transmission ranges
- Adoption of emerging advantages
- Prediction of future environmental events

Conclusion

First Project Phase

- Adoption of organic principles to a sensor network
 - Role assignment/role changing
 - Flocking
 - Scale free networks
- Goal: Static network with optimal lifetime and robustness

Second Project Phase (starting April 2008)

- Adaptation of the network to dynamic events
 - Changes of environment
 - Changes of environment
- Goal: Energy-aware handling of expected and unexpected phenomena

Questions ?

Publications:

- [REI06] Reichenbach, Frank; Bobek, Andreas; Hagen, Phillip; Timmermann, Dirk; Increasing Lifetime of Wireless Sensor Networks with Energy-Aware Role-Changing; In Proceedings of the 2nd IEEE International Workshop on Self-Managed Networks, Systems & Services (SelfMan 2006), Dublin, Ireland, Jun 2006
- [SAL07A] Salzmann, Jakob; Kubisch, Stephan; Reichenbach, Frank; Timmermann, Dirk; Energy and Coverage Aware Routing Algorithm in Self Organized Sensor Networks; Proceedings of Fourth International Conference on Networked Sensing Systems, pp. 77-80, ISBN: 1-4244-1231-5, Braunschweig, Deutschland, Jun 2007
- [SAL07B] Salzmann, Jakob; Behnke, Ralf; Lieckfeldt, Dominik; Timmermann, Dirk; 2-Mascle A Coverage Aware Clustering Algorithm with Self Healing Abilities; 3. International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Melbourne, Australia, Dec 2007, **submitted**
- [SAL07C] Salzmann, Jakob; Behnke, Ralf; Timmermann, Dirk; Analyse regelmäßiger Clusterformen in Sensornetzwerken; 12. Symposium Maritime Elektrotechnik, Elektronik und Informationstechnik, Rostock, Deutschland, Oct 2007, accepted
- [SAL07D] Salzmann, Jakob; Behnke, Ralf; Timmermann, Dirk; Geographical Clustering with Coarse-Grained Localization, 5. Internation Forum "Life Science Automation", Washington DC, Oct 2007, **accepted**

