
ModelModel--driven Development ofdriven Development of
SelfSelf--organizing Control Applicationsorganizing Control Applications
(MODOC)(MODOC)

Prof. Dr.-Ing. Torben Weis
Universität Duisburg-Essen

Prof. Dr. Hans-Ulrich Heiß
PD Dr.-Ing. Gero Mühl
Dipl.-Inform. Helge Parzyjegla
TU Berlin

13 September 2007 DFG 1183 ORGANIC COMPUTING 2

MODOC Project

> Problem Domain
> Described in domain-specific terms

> Model-Transformation
> Encapsulates expert knowledge
> Transforms model into an executable system

> Realization Domain
> Described in platform-specific terms

Problem Domain Realization Domain
Model-

Transformation

13 September 2007 DFG 1183 ORGANIC COMPUTING 3

Model Transformation

Model Transformation

Domain-specific
Model

Role A

Role B

Role C

Role Model

Self-stabilizing
Algorithms

Algorithm
Toolbox

Platform-specific
Model

Computational Model
(State machine, Turing Machine)

13 September 2007 DFG 1183 ORGANIC COMPUTING 4

Role Assignment
Algorithm Stack

Role Assignment
> Assigns roles to capable

nodes
> Monitors roles and reas-

signs them if necessary

Publish/Subscribe
> Provides communi-

cation infrastructure
> Enables addressing

of roles

Radio (Send, Receive) / Timer

Spanning Tree

Role Assignment

Publish/Subscribe

Role A Role B Role C

S
el

f-o
rg

an
iz

at
io

n
S

el
f-s

ta
bi

liz
at

io
n

Spanning Tree
> Structures the network
> Determines the role

coordinator

13 September 2007 DFG 1183 ORGANIC COMPUTING 5

Optimization Goals

Accelerate self-stabilization
> Idea: Send more messages to

resolve faults faster
> Instantaneous forwarding of

subscriptions and notifications
> Introduction of explicit

unsubscriptions to remove
invalid routing entries

Save energy
> Idea: Send less messages to

decrease energy consumption
> Delay forwarding of messages

in favor for piggybacking
> Decouple the forwarding of

heartbeats from their receipt

Trade-off between stabilization time and energy consumption.

13 September 2007 DFG 1183 ORGANIC COMPUTING 6

Role Placement

> Basic role placement
> Assign the role to any node that can execute it

> Improved role placement
> Collaborating roles should be close to each other

> One network, multiple applications
> Roles of one application interact heavily
> Roles of different applications interact less frequently

> Idea: Exploit locality effects
> Place roles of an application close to each other
> Reduces the number of hops a message must be forwarded
> Saves energy and reduces communication delays

13 September 2007 DFG 1183 ORGANIC COMPUTING 7

Evaluation

> Average stabilization time

Parameters
> Nodes: 100 – 500
> Applications: 20
> Roles: 80 (total)

13 September 2007 DFG 1183 ORGANIC COMPUTING 8

Evaluation

> Average energy consumption

Parameters
> Nodes: 100 – 500
> Applications: 20
> Roles: 80 (total)

13 September 2007 DFG 1183 ORGANIC COMPUTING 9

Reconfiguration

> Reasons for reconfiguration
> Adaptation to structural changes (e.g., addition/removal of devices)
> Optimization of system’s performance
> Manual intervention (e.g., maintenance of devices)

> Reconfiguration with layered self-stabilization
> Keep multiple configurations in parallel
> Build up next configuration while another is still active
> Consistently switch between configurations on each layer

Old Color
Dissemination of old
messages due to
network delay

Active Color
Currently active
color/configuration

Next Color
Subscriptions and
recolor message
dissemination

13 September 2007 DFG 1183 ORGANIC COMPUTING 10

MODOC Phase II

> Computational Model: Support more complex applications
Specialized Turing Machine instead of State Machine

> Super-stabilization: Give guarantees even during stabilization
for certain classes of transient faults safety constraints

> Fault containment: Locally bound the effects of faults within
the affected system‘s component

> Quality of Service: Optimize the role placement to fulfill
application specific QoS requirements

E-Home E-Office

Computational Model

> Turing Machines & Self-stabilization
> Ideal case: Show that every Turing Machine can be transformed

in a self-stabilizing Turing Machine
> Theoretically possible (Dolev et. al.), but not practicable

> Turing Machines & Actuator/Sensor Networks (ASNets)
> Turing Machines model batch operation, i.e. they halt
> ASNets do never halt

> Solution: Self-stabilizing Persistent Turing Machine

13 September 2007 DFG 1183 ORGANIC COMPUTING 11

Output tape

Persistent tape

Input tapeInput Message

Output Message

Computational Model

> Self-stabilizing TM
> Idea: Make the TM forget about old symbols
> Do not allow to derive fresh symbols from old symbols

> Technical approach
> All tape symbols have an age, TM heads have an age
> If a TM head reads old symbols, it becomes old, too
> Old TM heads can only write old symbols

13 September 2007 DFG 1183 ORGANIC COMPUTING 12

(A,3), (X,2), (Y,4)
Age: 2

(A,3), (X,2), (Y,4)
Age: 4

(A,3), (X,2), (Y,4), (Z,4)
Age: 4

13 September 2007 DFG 1183 ORGANIC COMPUTING 13

> Dynamic role assignment at runtime
> Each role poses requirements to the node hosting it
> Nodes announce their capabilities to serve certain roles
> A previously elected role coordinator assigns roles to nodes

capable of serving them

Revisiting the dynamic
Role Assignment

Role A

Role B

Role C

13 September 2007 DFG 1183 ORGANIC COMPUTING 14

> QoS requirements can be derived from the application model
and stored in meta-data during the transformation

> Nodes may use this meta-data and additionally announce
how good they are in performing a given role

> Role coordinator chooses a suitable candidate among them

Quality of Service (QoS)

Role A

Role B

Role C

13 September 2007 DFG 1183 ORGANIC COMPUTING 15

> Communication demands of related roles may also be derived
from the application model or given annotations

> Role coordinator tries to initially place related roles close to
each other that share high communication demands

> Fine-grained optimization may still be necessary during
runtime since communication patterns may change over time

Optimized Role
Placement

Role A

Role B

Role C

13 September 2007 DFG 1183 ORGANIC COMPUTING 16

Discussion

Thanks for your kind attention.

Torben Weis
Distributed Systems Group
torben.weis@uni-due.de
http://www.uni-due.de/vs

