

Organic Fault-tolerant Robot Control Architecture

E. Maehle, F. Mösch, <u>M. Litza</u>

W. Brockmann, <u>N. Rosemann</u>

OSNABRÜCK UNIVERSITÄT

K.-E. Großpietsch

		Н	ł	1
		H	1	1
			-	
	a,		3	

Institut Autonome Intelligente Systeme

University of Lübeck Institute of Computer Engineering

Institute of Computer Science Computer Engineering Group

Fraunhofer Institut AIS Sankt Augustin

5th Colloquium *Organic Computing* Lübeck

Motivation

Autonomous mobile robots in human environments

unstructured, dynamically changing environment

no explicit model of the environment

-> fault-tolerance, safety

no explicit fault model

complex control systems

-> engineering bottleneck

ORCA - Organic Robot Control Architecture

Goals:

- Self-organization: adapt to malfunctions without a formal model
- Learning: online and in-situ under hard real-time constraints
- Safety: avoid critical system states at any time
- Goal-Directedness: stable improvement of behavior
- Low Cost: overhead should be as low as possible
- Approach: controlled emergence on lower functional control levels

ORCA - Organic Robot Control Architecture

- Hierarchic architecture
- Components:
 - BCU = Basic Control Unit
 - OCU = Organic Control
 Unit
- Observer-Controler related

omputing P

- Monitor: anomaly detection
- Memory: short term history
- Reasoner: hard real-time determination of a counteraction

ORCA Test- and Demonstration-Plattforms

- CARL
- FS-CARL

omputing >

• WALTER

- OSCAR
- OSCAR II
- OSCAR III

- Hexapod
- 3DOF per leg
- Ground contact sensor

OSCAR – Basic Movement Principle

Every leg oscillates periodically between two extreme positions.

One coordination rule: A leg is allowed to swing only if its neighbors feel ground.

OSCAR - Gait Patterns & Curve Walking

Different gait patterns emerge due to changing few parameters:

- Changing duration of the stance phase change the speed of the pattern.
- Changing distance between the extreme positions allows curve walking.
- Changing relations between legs allows walking with an amputated leg.

OSCAR – Curve Walking Results

Undisturbed

OSCAR - Anomaly Detection

OSCAR signals:

- 18 servo control signals
- 18 servo position signals
- 18 servo current signals
- 6 ground contact sensors
- 6 independent moving legs (2 possible phases)

Approaches:

- Information Theoretical
- Immune System Inspired (RADE)

Anomaly Detection – Information Theoretical Approach

- Relation signal (RS) describes the dependency between 2 signals.
- Dynamic anomaly (DA) detects if RS is changing significantly relative to its average in the past.

$$DA = \frac{|RS - RSav|}{RSav\Delta RS} 100$$

 Relative anomaly (RA) – detects if RS of a special part (leg) is significantly different from similar parts.

$$RA_i = \frac{\left|RS_i - \overline{RS}_{1:n}\right|}{2(\max(RS_{1:n}) - \min(RS_{1:n}))}100$$

Anomaly Detection – Information Theoretical Approach

Possible relation signals:

- Mutual Information (MI)
- Correlation

Examples:

- RS(current, real position) allows the detection of a broken gear.
- RS(beta-servo current, ground contact) allows the detection of a missing screw.

Anomaly Detection - Results

Missing screw on one servo (blue) and damaged gear on another (green). RS is a Mutual Information computed from beta-servo current and ground contact signal.

Health Signal - Concept

- **Approach**: Every relevant system entity gets a health signal reflecting its trustworthiness
- System entity: single signal, sensor, subunit, learning unit,...
- Signal reflects the health status of an entity from a local point of view
- Other entities (BCU, OCU) can use health signals to calculate own health status
- Health signals can be used to trigger **countermeasures** (OCU)

Health Signal - Semantics

- Health signals (HS) normalized to [0,1]
 - 1: completely healthy (normal) state
 - 0: completely unhealthy (abnormal) state
- Reasons for anomalies (HS<1) are not sent to other entities
- **Advantage**: Uniform treatment for different types of anomalies

throughout the system hierarchy:

- Signal quality
- Hardware faults
- Interaction faults
- Design gaps
- Unlearnt areas

• ...

Health Signal - Fusion

General approach for fusion: T-norm (minimum, product, ...) (Other operators for special cases, e.g., for alternative sub-units)

Health Signal – Closing the Loop

- First example: Reaction to dropping of health signal when stepping against obstacles with robot WALTER
 - \rightarrow step against obstacle
 - \rightarrow anomalies in current/position
 - \rightarrow dropping health signal
 - \rightarrow increase step height
 - \rightarrow overcome obstacle
 - \rightarrow keep walking
 - \rightarrow decrease step height

Small Obstacle

DFG 1183 ORGANIC COMPUTING 19

Safe Learning - Concept

Motivation: Learning is essential for complex self-x systems, but safety and controllability have to be guaranteed

Approach: • Adaptive Filters for low level adaptation

 Controlled self-optimization by determining and correcting local characteristics of the dynamically learnt behavior (monitoring and/or guidance)

- Inspired by the immune system
 - → Detection of anomalies/antigenes by local characteristics through local templates
- Incremental learning in a local learning system
 - → Although a local approach, there is a global effect

Safe Learning – SILKE

(System to immunize learning knowledge-based elements)

- Extension of zero-order Takagi-Sugeno fuzzy systems
 - Rules form a fixed lattice in the input space
 - Each node of the lattice is a conclusion
 - Conclusions (i.e., numbers) are changed by learning
- After each learning step: look at local neighborhood of the input vector where learning took place
- Template determines characteristics of neighborhood

SILKE - Foundations

Apply template *H* to *n*-dim rulebase *S* at rule *i*₁,...,*i*_n by normalized matrix convolution to obtain SILKE-template-values *S*⁺

$$S'_{i_1,\dots,i_n} = \frac{1}{N_H \cdot r^n} \sum_{u_1=0}^{r-1} \cdots \sum_{u_n=0}^{r-1} S_{i_1+u_1-k,\dots,i_n+u_n-k} \cdot H_{u_1+1,\dots,u_n+1}$$

• Template size r > 1 (odd number), normalization N_H , k = (r - 1)/2

Examples for 2-dim templates:

$$H_{average} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad H_{gradient} = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

SILKE - Example

Simulated pole-balancing cart

- SILKE-*Monitoring* by template for intended gradient
- SILKE-Guidance by template for average rule conclusions

• Optimize guidance effect by tuning the **adjustment rate** λ

ORCA-Project

	ISSUES						
	Emergence	Health Signal	Adaptive Filters	Safe Learning			
P H A S E	Gait Pattern with Walknet	Semantics	Simulation of relevant faults	SILKE templates Adjustment rate Mathematical foundations			
	Cope with leg detachment	Generation Fusion	Fault compensation by				
1	Emergent curve walking	SILKE for monitoring	adaptive filters				
P H	 Self-opt leg movement Adaptation to internal anomalies Self-org high level behavior 	Health signal as feedback to	Implementation	Interplay of health signal and learning Disrupted learning Extension of SILKE-approach			
A S F		control Health signal	of AF for low level fault compensation				
2		for whole system	in Real Robots				
	OSCAR I OSCAR I	I OSCAR III Simula	ations WALTER	FS-CARL CARL			
Platforms							

13th Sep 2007

DFG 1183 ORGANIC COMPUTING 27