Formal Modeling, Safety
Analysis, and Verification of
Organic Computing Applications

SAVE ORCA

Matthias Gudemann, Florian Nafz, Frank Ortmeier
Wolfgang Reif, Hella Seebach A

SAVE ORCA - University Augsburg

Dr. Frank Ortmeier, September 2007

Goal:

Goal & Challenges

(Top-Down) design framework for highly reliable and Organic

Computing applications including

Design and construction
Formalization of self-X
Methods and tools for formal analysis

Challenges:

Dr. Frank Ortmeier, September 2007

Guidelines for design and construction of Organic Computing applications from traditional
ones

Process for engineering self-x properties into the application
Provide tools to give correctness- and behavioral guarantees despite of self-organization
Develop methods to (Provably) measure the degree of self-X

SAVE ORCA - University Augsburg

2

Target systems

 Embedded, software-intensive applications

- Example: adaptive production cell

Storage Goal: Process workpieces in a given order!

Dr. Frank Ortmeier, September 2007 SAVE ORCA

oc

Storage

- University Augsburg 3

oc

Desired properties of an
OC system

Storage Storage

el

P > T

ST j" v ==
o

o

<<
ST e
e S
'1&\,//‘ "
I C

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 4

Desired properties of an ee'
OC system
Self-configurin

Storage Storage

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 5

oc

Desired properties of an
OC system

Storage Storage

\t\\‘\
/ =
. =
g ‘Of
~ele] Y

<<
ST e
e S
'1&\,//‘ "
I C

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 6

Desired properties of an
OC system

Self-healin

Okay, i
switch to
,,drill hole“

My drill is broken
so i switch to
,tighten screw“

Soican
stay in
ninsert
screw*

| calculated
the new

transportation

ordering

So let's
change to
the new
order

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 7

oc

Desired properties of an
OC system

Storage Storage

el

P > T

ST j" v ==
o

o

<<
ST e
e S
'1&\,//‘ "
I C

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 8

Desired properties of an ee'
OC system
Self-adaptin

Storage

Partly processed and
unprocessed workpieces
with RFID-Tags

Storage

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 9

Self-oitimizini

Storage Storage

Is this the best solution?

s / d S

Desired properties of an
OC system

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 10

oc

1. Design and modeling of Organic Computing systems

Achievements of the project
after phase I:

2. Formal foundations for Organic Computing systems

3. Process for construction of Organic Computing systems

4. Techniques for measuring the degree of self-healing

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 11

Design and modeling
of OC systems

P
kS
- System consists of[agents] * s
 Agents have capabilities o > — > —
& l
- |Resources|are to be processed with ~
capabilities according to given|tasks j/
- Roles assign capabilities to agents f o — >

Role distribution is the core element
of the organic part of the system
Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 12

Generalization

f21
1)

s

Roleallocation | 1.

1

currentAllocation

ExternalMessage AgentMessage - o Resource 9

sendFrom processed_by : + 8

| P EEIN >,

5 41

Message . a 4 (@N

g Capability CD

sendTo N

has e needs 5 '

’ S
sendTo e

* performed_by _ ' [®]

Fpm output includes needs m

5 1 ~—t

~—t

+ * 1 CD

Role —_—

O

N

currentTask
If.performed_by.has- =includesall{self .includes)} IA {4: inv: self.input->exists(a:Agent|a.output=self.in

Models of
erformed_by.input- =includesall{self.from)} Il. {S: inv: self.output->exists(a: Agent|a.input=self th e .I:u n Ctl on a.l |t| es
{3: inv: self.performed_by.output- =includesall{self .to)} IL [Seebach, Ortmeier 2007]

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 13

Example: adaptive production cell
0.. Rob: Agen}fi: - : ul ”
ot 1 ;‘ 1 ’; -)
Such models can be directly used
=1~ as basis for implementation
— - for formal anaIyS|s
[currertalosation cldes

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 14

oc

1. Design and modeling of Organic Computing systems

Achievements of the project
after phase I:

2. Formal foundations for Organic Computing systems

3. Process for construction of Organic Computing systems

4. Techniques for measuring the degree of self-healing

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 15

Observation

« Many OC systems can be divided into two parts:
— One part which provides intended functionalities (e.g. collect and
relay data, process workpieces, control traffic lights)
and

— One part which provides self-healing, self-adaptation, self-
configuration and/or self-optimization capabilities (often
Implemented as an observer/controller architecture)

* Consequence:

— This can help for formally describing and specifying Organic
Computing systems!

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 16

oc

restore invariant approach

Restore invariant approach

1. Design goals captured in INV

Expected guarantees

3. Temporary violation of INV leads to self-
organisation (reconfiguration) restoring INV

2. OC-system preserves INV
as long as ever possible

4. Failure if restoring of INV is no longer possible

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 17

Application to case study

Case study example PN
-
— 3 robots, 3 different tools each, reconfigurable carts o8

Invariants:

— 1,2 “Robot cell still has d-i-t capability”
— |,: “Carts are configured correctly”

Expected properties to prove:

— P, "Workpieces that leave the cell are processed with all tools”
— P,: "Workpieces are never processed in wrong sequence”

Theorem: (can be proven automatically)

— P, and P, are valid under the assumption of a correct
reconfiguration algorithm that restores the invariants |, and |,

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 18

Defining self-X

» ODP can be used for defining self-x properties *

— ldea: _lj M
+ Many self-x properties can be described within ——=—
the language of ODP I
. [Seebach, Ortmeier 2007]
— Example: self-healing
<~ . <. e «
4 ° 4 L

A system SYS, which is modeled as an instance of the
organic design pattern is called self-healing for a given set
C of capabilities and a goal G, if after failure/loss of any
capability ¢ € C, then it will eventually come to a role
allocation in which G will be achieved again.

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 19

oc

+ ODP can be used for defining self-x properties - - =] -
— ldea: “;¢£ A

Defining self-X

L

« Many self-x properties can be described within ——
the language of ODP ==

. . [Seebach, Ortmeier 2007]
— Example: self-configuring

2 %

>
e -
S

A system SYS, which is modeled as an instance of the
organic design pattern is called self-configuring for a goal G,
if the system is put into running mode with an arbitrary role
allocation o, then it will eventually come to a role allocation
o in which G will be achieved.

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 20

Defining self-X

* ODP can be used for defining self-x properties
— ldea: e

« Many self-x properties can be described within =
the language of ODP P
. [Seebach, Ortmeier 2007]
— Example: self-adapting

new tasks

A system SYS, which is modeled as an instance of the organic design
pattern is called self-adapting for a given set T = {t} of tasks, if there is
a change of tasks from t, to t, and t;,t, € T, then the system will
eventually come to a role allocation in which the new task t, will be
performed.

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 21

Defining self-X

* ODP can be used for defining self-x properties -~
— ldea: O

« Many self-x properties can be described within e ;’i’if.f'fiﬁf;]f’ﬁifiﬁiT,j_i,f’“'
the language of ODP P
... [Seebach, Ortmeier 2007]
— Example: self-optimizing

A system SYS, which is modeled as an instance of the organic design
pattern is called self-optimizing for a given goal G and a given rating
function f:> » R (where) denotes the space of all eligible role
allocations), if the system eventually comes to a role allocation ¢ in
which f(o) is (locally) minimal over the set .

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 22

oc

1. Design and modeling of Organic Computing systems

Achievements of the project
after phase I:

2. Formal foundations for Organic Computing systems

3. Process for construction of Organic Computing systems

4. Techniques for measuring the degree of self-healing

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 23

3. Construction of OC

systems
- ODP can be directly used for implementation - hwﬁﬁ
— ldea: e [

* Select a communication infrastructure

* Wrap agents into this infrastructure

» Define invariants which must be restored

» Select an algorithm for invariant restoration

— Example:
- Communication infrastructure:AgcntService
» ODP entities are wrapped into Agent Service components
» Hardware is simulated in Microsoft Robotics Studio
 Algorithms tested:
— selection of predefined configurations
— random choice and result checking (work in progress)
— SAT checking (work in progress)

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 24

oc

Example: adaptive production cell

/

AgentService

Microsoft
Robotics Studio

Physical model of
* Robots
» Carts
» Workpieces

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 25

oc

1. Design and modeling of Organic Computing systems

Achievements of the project
after phase I:

2. Formal foundations for Organic Computing systems

3. Process for construction of Organic Computing systems

4. Techniques for measuring the degree of self-healing

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 26

4. Measuring the degree of
failure tolerance

* Question: = PR
— How self-healing is this system? J = =1 = - {-
— How many failures can be .| e L
tolerated? e e 3 L i
::’ wu,:;;:'L. | - 1- ‘f]qf‘

"""""""""""""

 Self-healing: [Asystem SYS, which is modeled as an instance of the
organic design pattern is called self-healing for a given set
C of capabilities and a goal G, if after failure/loss of any
capability c € C, then it will eventually come to a role
allocation in which G will be achieved again.

* Developed a theory: Adaptive DCCA

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 27

oc

Adaptive DCCA

(DCCA = Deductive Cause Conseguence Analysis)

Definition of minimal critical set:

Let I" be a finite set of failure modes, then A C I" is called critical w.r.t.
a given hazard H iff

SYS* EE(— (N\ A) until EG (= (I'\ A) A H))
I" is called minimal critical if no teal subset is critical

.) [Gudemann, Ortmeier 2006]
- This means in natural language:

“There exists a patch such, that eventually H becomes true forever
and no failure modes of the set I'\ A have appeared before the
hazard has become permanent.”

 Theorem: The set of minimal all minimal critical sets is complete.
[Ortmeier 2006]

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 28

Adaptive DCCA (2)

(DCCA = Deductive Cause Consequence
Analysis)

Failure modes

— Losses of capabilities
e.g. drill breaks, arm gets stuck

Hazard

— Inability to fulfill a given goal
e.g. workpieces can not be correctly processed

Adaptive DCCA answers the question:

..............

uuuuuuuuuuu

“Which minimal combination of losses of capabilities

.......

nnnnnn

........

74 roboter-floran smv

can prohibit fulfillment of the goal permanently?”

in other words:

“How much self-healing is in the system?”

Process:

— Translate the model into a verification engine language (here SMV)

— ADCCA can the be formulated as (automatically solvable) deduction problem

Dr. Frank Ortmeier, September 2007

ile Prop View Goto

History Abstraction

Browser | Properties | Results | Cone | Using | Groups |

Source | Trace | Log |

|Property: aig3

SAVE ORCA - University Augsburg

29

oc

* There exist 64 minimal critical sets 1.e. combinations of

Example: Adaptive production cell

— Tolerable failures: min#=2 , max# =7

<
— n-point failures: ﬁo@
- 22 3 - point failures QX@

* 42 5 — point failures

losses of capabilities that can not be self-healed. @

[Glidemann, Ortmeier 2006]

* In terms of self-healing:

— The system can self-heal any single or dual loss of capabilities, it
can self heal all but 22 combinations of three lost capabilities, ...

 These results can be combined with stochastic data to
compute MTF and MTBF rates.

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg

Summary:
Status of the project after phase |

 Achievements:

— Design pattern for modeling Organic Computing systems has been developed

— Formal foundations for describing Organic Computing systems and their properties
have been developed

— First steps towards a process for the construction of Organic Computing systems
have been taken

— Formal analysis technigues for measuring the degree of self-healing of an Organic
Computing have been developed

* Publications:

— 5 publications, 2 in progress, 2 reports
— 3 Ph.D. projects started

* Next steps ...

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 31

Objectives for phase 2:

* Goal 1: Integrate the ODP in an SW engineering process

— Develop an engineering process to (a) build Organic Computing
application and to (b) engineer self-x into existing applications

— Embed the ODP in a multi-agent or service framework
 First evaluations with Agent Service
* Other candidates: JADE, MSRS
— Evaluate/Integrate existing organic middlewares into the process

* Goal 2: Formal analysis methods

— Generate invariants form OCL constraints and ODP

— Develop technigues to formally verify/measure the degree of
* self-configuration
 self-adaptation
* self-optimization

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 32

Objective for phase 2:

* Goal 3: Organic algorithms

— Analyze existing organic algorithms for the class of invariants they can
restore

« Cooperation with OC-u project appointed

— Develop an organic algorithm which directly restores invariants
» First steps/ideas with SAT checking
» Possible next steps: constraint solvers

* Goal 4: Apply methods to other domains

— Apply ODP to an autonomous SoC scenario; Cooperation with ASoC and
OC- projects appointed

— Analysis of different systems with ADCCA to measure their amount of
self-healing

— Comparison/Integration of ADCCA metric with/into generic metric
frameworks

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 33

oc

Thank you for your attention ...

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 34

Comparison of design

variants Y o«
* Optimistic: - o> >
P

* Redundancy: | < &% ; -~
~ -~

/

o

« Self-x;

o

+ reconfiguration

\M

A\
L\
.

\

Dr. Frank Ortmeier, September 2007

SAVE ORCA - University Augsburg

VIV A
)

35

oc

Self-x pays off

Results for the example:

Expected time until

points of failures :
system failure

single point | 3 points | 4 points | 5 points
Optimistic 8 - - - 11 days
Redundancy 5 3 - - 59 days
Self-x - 22 - 42 281 days

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 36

