
Formal Modeling, Safety
Analysis, and Verification of

Organic Computing Applications

SAVE ORCA

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 1

Matthias Güdemann, Florian Nafz, Frank Ortmeier
Wolfgang Reif, Hella Seebach

Goal & Challenges

Goal:

(Top-Down) design framework for highly reliable and Organic

Computing applications including

• Design and construction

• Formalization of self-X

• Methods and tools for formal analysis

Challenges:
– Guidelines for design and construction of Organic Computing applications from traditional

ones

– Process for engineering self-x properties into the application

– Provide tools to give correctness- and behavioral guarantees despite of self-organization

– Develop methods to (Provably) measure the degree of self-X

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 2

Target systems

• Embedded, software-intensive applications

• Example: adaptive production cell
Goal: Process workpieces in a given order!

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 3

Processed
workpieces

Unprocessed
workpieces

Storage Storage

Desired properties of an
OC system

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 4

Processed
workpieces

Unprocessed
workpieces

Storage Storage

Desired properties of an
OC system

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 5

dynamically integrate

new robots

Processed
workpieces

Unprocessed
workpieces

Self-configuring

Storage Storage

Desired properties of an
OC system

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 6

Processed
workpieces

Unprocessed
workpieces

Storage Storage

Desired properties of an
OC system

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 7

Okay, i

switch to

„drill hole“

So i can

stay in

„insert

screw“

So let„s

change to

the new

order

I calculated

the new

transportation

ordering

Resistant to component
failures

Processed
workpieces

Unprocessed
workpieces

My drill is broken

so i switch to

„tighten screw“

Self-healing

Storage Storage

Desired properties of an
OC system

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 8

Processed
workpieces

Unprocessed
workpieces

Storage Storage

Desired properties of an
OC system

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 9

Processed
workpieces

Unprocessed
workpieces

Adapting to new
goals/tasks

Partly processed and

unprocessed workpieces

with RFID-Tags

Self-adapting

Storage Storage

Desired properties of an
OC system

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 10

Trying to find “optimal”

configurations

Processed
workpieces

Unprocessed
workpieces

Self-optimizing

Storage Storage

Is this the best solution?

Achievements of the project
after phase I:

1. Design and modeling of Organic Computing systems

2. Formal foundations for Organic Computing systems

3. Process for construction of Organic Computing systems

4. Techniques for measuring the degree of self-healing

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 11

Design and modeling
of OC systems

• System consists of agents

• Agents have capabilities

• Resources are to be processed with

capabilities according to given tasks

• Roles assign capabilities to agents

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 12

Role distribution is the core element
of the organic part of the system

III.

I.

II.

Generalization

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 13

Models of
the functionalities

Specification of
organic part

[Seebach, Ortmeier 2007]

O
rg

a
n

ic
 d

e
s

ig
n

 p
a

tte
rn

 (O
D

P
)

Example: adaptive production cell

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 14

Such models can be directly used
- as basis for implementation
- for formal analysis

Achievements of the project
after phase I:

1. Design and modeling of Organic Computing systems

2. Formal foundations for Organic Computing systems

3. Process for construction of Organic Computing systems

4. Techniques for measuring the degree of self-healing

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 15

Observation

• Many OC systems can be divided into two parts:

– One part which provides intended functionalities (e.g. collect and
relay data, process workpieces, control traffic lights)

and

– One part which provides self-healing, self-adaptation, self-
configuration and/or self-optimization capabilities (often
implemented as an observer/controller architecture)

• Consequence:

– This can help for formally describing and specifying Organic
Computing systems!

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 16

Restore invariant approach

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 17

INV

implies

Expected guarantees

1. Design goals captured in INV

2. OC-system preserves INV
as long as ever possible

3. Temporary violation of INV leads to self-
organisation (reconfiguration) restoring INV

t

working reconfiguration working

restore invariant approach

4. Failure if restoring of INV is no longer possible

Reconfiguration can be understood as a
restore invariant problem!

Application to case study

• Case study example

– 3 robots, 3 different tools each, reconfigurable carts

• Invariants:

– I1: “Robot cell still has d-i-t capability”

– I2: “Carts are configured correctly”

• Expected properties to prove:

– P1: “Workpieces that leave the cell are processed with all tools”

– P2: “Workpieces are never processed in wrong sequence”

• Theorem: (can be proven automatically)

– P1 and P2 are valid under the assumption of a correct
reconfiguration algorithm that restores the invariants I1 and I2

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 18

Defining self-X

• ODP can be used for defining self-x properties

– Idea:

• Many self-x properties can be described within
the language of ODP

– Example: self-healing

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 19

A system SYS, which is modeled as an instance of the
organic design pattern is called self-healing for a given set
С of capabilities and a goal G, if after failure/loss of any
capability c ∈ С, then it will eventually come to a role
allocation in which G will be achieved again.

[Seebach, Ortmeier 2007]

Defining self-X

• ODP can be used for defining self-x properties

– Idea:

• Many self-x properties can be described within
the language of ODP

– Example: self-configuring

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 20

[Seebach, Ortmeier 2007]

A system SYS, which is modeled as an instance of the
organic design pattern is called self-configuring for a goal G,
if the system is put into running mode with an arbitrary role
allocation σarb then it will eventually come to a role allocation
σG in which G will be achieved.

Defining self-X

• ODP can be used for defining self-x properties

– Idea:

• Many self-x properties can be described within
the language of ODP

– Example: self-adapting

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 21

[Seebach, Ortmeier 2007]

new tasks

A system SYS, which is modeled as an instance of the organic design
pattern is called self-adapting for a given set Τ = {ti} of tasks, if there is
a change of tasks from t1 to t2 and t1,t2 ∈ Τ, then the system will
eventually come to a role allocation in which the new task t2 will be
performed.

Defining self-X

• ODP can be used for defining self-x properties

– Idea:

• Many self-x properties can be described within
the language of ODP

– Example: self-optimizing

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 22

[Seebach, Ortmeier 2007]

optimized throughput

A system SYS, which is modeled as an instance of the organic design
pattern is called self-optimizing for a given goal G and a given rating
function ƒ:∑ ↦ ℝ (where ∑ denotes the space of all eligible role
allocations), if the system eventually comes to a role allocation σ in
which ƒ(σ) is (locally) minimal over the set ∑.

Achievements of the project
after phase I:

1. Design and modeling of Organic Computing systems

2. Formal foundations for Organic Computing systems

3. Process for construction of Organic Computing systems

4. Techniques for measuring the degree of self-healing

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 23

3. Construction of OC
systems

• ODP can be directly used for implementation

– Idea:

• Select a communication infrastructure

• Wrap agents into this infrastructure

• Define invariants which must be restored

• Select an algorithm for invariant restoration

– Example:

• Communication infrastructure:

• ODP entities are wrapped into Agent Service components

• Hardware is simulated in Microsoft Robotics Studio

• Algorithms tested:

– selection of predefined configurations

– random choice and result checking (work in progress)

– SAT checking (work in progress)

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 24

Example: adaptive production cell

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 25

Microsoft
Robotics Studio

Physical model of
• Robots
• Carts
• Workpieces

+

Achievements of the project
after phase I:

1. Design and modeling of Organic Computing systems

2. Formal foundations for Organic Computing systems

3. Process for construction of Organic Computing systems

4. Techniques for measuring the degree of self-healing

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 26

4. Measuring the degree of
failure tolerance

• Question:

– How self-healing is this system?

– How many failures can be
tolerated?

• Self-healing:

• Developed a theory: Adaptive DCCA

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 27

A system SYS, which is modeled as an instance of the
organic design pattern is called self-healing for a given set
С of capabilities and a goal G, if after failure/loss of any
capability c ∈ С, then it will eventually come to a role
allocation in which G will be achieved again.

Definition of minimal critical set:

Let  be a finite set of failure modes, then  ½  is called critical w.r.t.

a given hazard H iff

SYS+ ╞ E(: (\ ) until EG (: (\ )  H))

 is called minimal critical if no teal subset is critical

• This means in natural language:

“There exists a patch such, that eventually H becomes true forever

and no failure modes of the set \  have appeared before the

hazard has become permanent.”

• Theorem: The set of minimal all minimal critical sets is complete.

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 28

[Güdemann, Ortmeier 2006]

[Ortmeier 2006]

Adaptive DCCA
(DCCA = Deductive Cause Consequence Analysis)

Adaptive DCCA (2)
(DCCA = Deductive Cause Consequence
Analysis)

• Failure modes

– Losses of capabilities
e.g. drill breaks, arm gets stuck

• Hazard

– Inability to fulfill a given goal

e.g. workpieces can not be correctly processed

• Adaptive DCCA answers the question:

“Which minimal combination of losses of capabilities

can prohibit fulfillment of the goal permanently?”

in other words:

“How much self-healing is in the system?”

• Process:

– Translate the model into a verification engine language (here SMV)

– ADCCA can the be formulated as (automatically solvable) deduction problem

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 29

Example: Adaptive production cell

• There exist 64 minimal critical sets i.e. combinations of

losses of capabilities that can not be self-healed.

– Tolerable failures: min # = 2 , max # = 7

– n-point failures:

• 22 3 – point failures
• 42 5 – point failures

• In terms of self-healing:
– The system can self-heal any single or dual loss of capabilities, it

can self heal all but 22 combinations of three lost capabilities, …

• These results can be combined with stochastic data to

compute MTF and MTBF rates.

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 30

[Güdemann, Ortmeier 2006]

Summary:
Status of the project after phase I

• Achievements:

– Design pattern for modeling Organic Computing systems has been developed

– Formal foundations for describing Organic Computing systems and their properties
have been developed

– First steps towards a process for the construction of Organic Computing systems
have been taken

– Formal analysis techniques for measuring the degree of self-healing of an Organic
Computing have been developed

• Publications:

– 5 publications, 2 in progress, 2 reports

– 3 Ph.D. projects started

• Next steps …

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 31

Objectives for phase 2:

• Goal 1: Integrate the ODP in an SW engineering process

– Develop an engineering process to (a) build Organic Computing
application and to (b) engineer self-x into existing applications

– Embed the ODP in a multi-agent or service framework

• First evaluations with Agent Service

• Other candidates: JADE, MSRS

– Evaluate/Integrate existing organic middlewares into the process

• Goal 2: Formal analysis methods

– Generate invariants form OCL constraints and ODP

– Develop techniques to formally verify/measure the degree of

• self-configuration

• self-adaptation

• self-optimization

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 32

Objective for phase 2:

• Goal 3: Organic algorithms

– Analyze existing organic algorithms for the class of invariants they can
restore

• Cooperation with OC-µ project appointed

– Develop an organic algorithm which directly restores invariants

• First steps/ideas with SAT checking

• Possible next steps: constraint solvers

• Goal 4: Apply methods to other domains

– Apply ODP to an autonomous SoC scenario; Cooperation with ASoC and
OC-µ projects appointed

– Analysis of different systems with ADCCA to measure their amount of
self-healing

– Comparison/Integration of ADCCA metric with/into generic metric
frameworks

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 33

Thank you for your attention …

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 34

Comparison of design
variants

• Optimistic:

• Redundancy:

• Self-x:

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 35

+ reconfiguration

Self-x pays off

points of failures
Expected time until

system failure

single point 3 points 4 points 5 points

Optimistic 8 - - - 11 days

Redundancy 5 3 - - 59 days

Self-x - 22 - 42 281 days

Dr. Frank Ortmeier, September 2007 SAVE ORCA - University Augsburg 36

Results for the example:

