

Multi-Objective Intrinsic Evolution of Embedded Systems (MOVES)

Paul Kaufmann, Marco Platzner Computer Engineering Group University of Paderborn {paul.kaufmann, platzner}@uni-paderborn.de

Motivation / Vision

- investigate intrinsic hardware evolution as a mechanism to achieve self-adaptation and –optimization for autonomous embedded systems
- an embedded system ...
 - adapts to slow changes by simulated evolution
 - typically, change of environment
 - adapts to radical changes by switching to pre-evolved alternatives
 - typically, change in computational resources
 - requires intrinsic evolution for autonomous operation

Overview

- topics of phase I
 - 1. models and algorithms
 - representation models for digital logic, multi-objective evolutionary optimization algorithms, tools for the evaluation of models and algorithms
 - 2. system-on-chip architecture
 - platform FPGA, hw/sw partitioning
 - 3. case studies and evaluation
 - test problems, classificator for electromyography (EMG) signals
- current and future topics (phase II)
 - 1. models and algorithms
 - address the scalability problem
 - investigate models for evolutionary self-adaptation
 - **2.** system-on-chip architecture
 - implement complete adaptive SoC architecture
 - 3. case studies and evaluation
 - intrinsic implementation of the prosthetic hand controller
 - investigate autonomous robot control and navigation

Evolvable Hardware - Representation

- Cartesian Genetic Program (CGP) [Miller and Thomson, '96]
 - the mostly used representation model for evolving digital hardware
 - array of combinational blocks connected by feed-forward wires, chromosome defines configuration of the array

- implemented highly parametrizable CGP model
 - array parameters: n_c, n_r, n_i, n_o, n_n, l

combinational blocks can be {AND, OR, ...} or n_n bit table lookup

September 13, 2007

Evolvable Hardware - Representation Model (2)

- Embedded CGP [Walker and Miller, '05]
 - chromosome is a DAG and does not encode placement
 - allows for subfunction extraction (which is a problem for CGP)
- implemented ECGP model
 - module creation based on cones in the DAG
 - modules are not created randomly, but depending on the number of generations the module substructure has persisted in the population
 - dynamic mutation rates

Evolvable Hardware - Genetic Algorithms (1)

- reference algorithm GA
 - conventional single-objective genetic algorithm
 - uses elitism, tournament selection, uniform crossover, mutation

Evolvable Hardware – Genetic Algorithms (2)

- optimization for multiple objectives
 - in circuit design: functional quality vs. speed vs. area (vs. power consumption)
 - often, the objectives are conflicting which leads to compromises
- approaches for optimizing circuits with multiple objectives
 - two-stage fitness [Kalganova and Miller '99], [Coello Coello '01]
 - we focus on a direct multi-objective evolution of digital circuits
- implemented algorithms
 - SPEA2 [Zitzler et al. '01]
 - μGA + μGA2 [Coello Coello '01]
 - NSGA II [Deb et al. '00]
 - TSPEA2, our own multi-objective optimizer [Kaufmann and Platzner '06]
 - OMOEA II [Liu et al. '06]
 - IBEA [Zitzler and Künzli '04]

ongoing

Evolvable Hardware – Estimation of Objectives

area and speed estimation for the CGP model

- more precise estimation by Xilinx backend tools
 - transformation of CGP chromosomes to FPGA netlists using JHDL
 - useful for experimentation, but runtimes and memory requirements are prohibitive for intrinsic evolution

Evolvable Hardware – Test Problems

- functions with correctness property
 - arithmetic and logic functions, e.g. adder, multiplier, parity, ...
 - popular test functions for comparing representation models and algorithms
 - the evolutionary design of such functions is not our primary target, as here classically engineered solutions might be sufficient
- functions without correctness property
 - the functional quality depends on (changing) input data
 - a-priory or optimal solutions are unknown
 - e.g. classificator, cache controller, robot navigation controller, ...

MOVES Framework

- generic evolutionary algorithm modules
 - representation models
 - operators
 - evolutionary algorithms
- graphical user interface
 - test different experiment parameter settings
 - evaluate newly implemented methods
 - investigate optimization process
- B batch mode tools
 - produce representative number of experiment runs
 - interface to grid computing software Condor

tools can be downloaded from the MOVES project page:

uni-paderborn.de/cs/ag-platzner/research/moves

10

Evolvable Hardware – SoC Architecture

- started implementation on reconfigurable system-on-chip
 - initial hw/sw partitioning on a platform FPGA including CPU and logic
 - partial reconfiguration, self-reconfiguration
- in software (PowerPC)
 - CGP representation model
 - GA and SPEA2
- in hardware
 - instantiated solution
 - time-consuming functions, e.g.. k-th nearest neighbor clustering of SPEA2

Case Study: EMG Signal Classificator (1)

- started to develop a self-adaptive EMG signal classificator for prosthetic hand control
- two models of evolution
 - off-line,
 during training phases
 - online,
 in parallel to the operation

- current system setup
 - PC with attached EMG sensors, amplifiers and A/D converters
 - evolvable hardware classifier simulated on the PC

Case Study: EMG Signal Classificator (2)

- EMG classificators require self-adaptation due to ...
 - varying sensor positions
 - varying skin conductance
 - cross talking of neighbor muscles
 - heart-beat noise
 - muscle fatigue
 - movement patterns change over time
 - varying electronic (analog) component parameters

Collaborations & Publications

Concerning P

- Prof. Dr. Jim Tørresen, University of Oslo
 - scalability, resource-aware EHW SoC, classification architectures
 - supported by DAAD
- PD Dr. Bernhard Sick, University of Passau
 - classification of EMG signals
- Prof. Dr. Hartmut Schmeck, University of Karlsruhe
 - approaches for evolvable hardware
- Paul Kaufmann and Marco Platzner. Multi-objective Intrinsic Hardware Evolution. Proc. International Conference on Military Applications of Programmable Logic Devices (MAPLD), Washington, DC, September, 2006.
- Paul Kaufmann and Marco Platzner. Toward Self-adaptive Embedded Systems: Multi-objective Hardware Evolution. Proc. International Conference on Architecture of Computing Systems (ARCS), Zurich, March 12-15, 2007.
- Paul Kaufmann and Marco Platzner. MOVES: A Modular Framework for Hardware Evolution. Proc. NASA/ESA Conference on Adaptive Hardware and Systems (AHS), Edinburgh, August 4-9, 2007.
 - received best paper award in the "Evolvable Hardware" category

Summary and Main Challenge

- summary
 - investigated models for digital circuit representation: CGP and ECGP
 - benchmarked a set of multi-objective optimizers for digital circuit design
 - created a tool suite for efficiently experimenting with models and algorithms
 - partially implemented a self-adaptive SoC architecture
 - first experiments with an evolvable classifier for prosthetic hand control
- main challenge: scalability
 - chose representation model and objects of "right" granularity
 - exploit problem-specific knowledge
 - → (evolve incrementally)

Overview

- topics of phase I
 - 1. models and algorithms
 - representation models for digital logic, multi-objective evolutionary optimization algorithms, tools for the evaluation of models and algorithms
 - 2. system-on-chip architecture
 - platform FPGA, hw/sw partitioning
 - 3. case studies and evaluation
 - test problems, classificator for electromyography (EMG) signals
- current and future topics (phase II)
 - 1. models and algorithms
 - address the scalability problem
 - investigate models for evolutionary self-adaptation
 - 2. system-on-chip architecture
 - implement complete adaptive SoC architecture
 - 3. case studies and evaluation
 - intrinsic implementation of the prosthetic hand controller
 - investigate autonomous robot control and navigation

Models and Algorithms

- novel representation model: multi-granular embedded CGP
 - use simple and complex building blocks
 - incorporate domain- and problem-specific knowledge

- constrain model parameters for
 - reducing the search space
 - efficient mapping to hardware

SoC Architecture

- develop a library of parametrizable hardware modules
 - that match the objects of the representation model (e.g., LUTs, arithmetic units, ...)
 - that can be dynamically instantiated on the FPGA
 - "virtual" FPGA vs. partial reconfiguration
- investigate observer/controller architecture for critical applications
 - observe critical states
 - recognize unsafe outputs
 - use additional sensor information
 - react to critical states
 - emergency stop
 - instantiate fall-back solution

Case Study: Robot Control and Navigation

- develop self-adaptive evolvable hardware (EHW) robot controllers
 - integrate such "EHW agents" into EyeSim, a simulation environment for the EyeBot robot platform
- investigate different models for evolutionary self-adaptation
 - e.g.. embedded circuit design, self-adaptive, self-triggered, online evolution (after [Sekanina '04])
 - issues: how to gather test data, how to define fitness, how to validate the evolved functions

EyeSim

EyeBot

Thank you for your attention!

