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Motivation / Vision 9@'

 Investigate intrinsic hardware evolution as a mechanism to achieve
self-adaptation and —optimization for autonomous embedded systems

* an embedded system ...

— adapts to slow changes by simulated evolution
« typically, change of environment

— adapts to radical changes by switching to pre-evolved alternatives
* typically, change in computational resources

— requires intrinsic evolution for autonomous operation |
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Overview e@"

 topics of phase |

1. models and algorithms

» representation models for digital logic, multi-objective evolutionary
optimization algorithms, tools for the evaluation of models and algorithms

2. system-on-chip architecture
« platform FPGA, hw/sw partitioning
3. case studies and evaluation
- test problems, classificator for electromyography (EMG) signals
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Evolvable Hardware - Representatioee"
Model (1)

« Cartesian Genetic Program (CGP) [Miller and Thomson, '96]
— the mostly used representation model for evolving digital hardware

— array of combinational blocks connected by feed-forward wires,
chromosome defines configuration of the array
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- implemented highly parametrizable CGP model
— array parameters:n_c,n_r,n_i,n_o,n_n,|

— combinational blocks can be {AND, OR, ...} or n_n bit table lookup
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Evolvable Hardware - Representatioee"
Model (2)

«  Embedded CGP [Walker and Miller, '05]

— chromosome is a DAG and does not encode placement
— allows for subfunction extraction (which is a problem for CGP)

« implemented ECGP model
— module creation based on cones in the DAG

— modules are not created randomly, but depending on the number of generations
the module substructure has persisted in the population

— dynamic mutation rates
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Evolvable Hardware - Genetic 9@'
Algorithms (1)

- reference algorithm GA
— conventional single-objective genetic algorithm
— uses elitism, tournament selection, uniform crossover, mutation
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Evolvable Hardware — Genetic e@'
Algorithms (2)
 optimization for multiple objectives

— in circuit design: functional quality vs. speed vs. area (vs. power consumption)
— often, the objectives are conflicting which leads to compromises

« approaches for optimizing circuits with multiple objectives
— two-stage fitness [Kalganova and Miller '99], [Coello Coello ’01]
— we focus on a direct multi-objective evolution of digital circuits

« implemented algorithms
— SPEAZ2 [Zitzler et al. ’01]
— UWGA + uGA2 [Coello Coello '01]
— NSGA |l [Deb et al. '00]
— TSPEA2, our own multi-objective optimizer [Kaufmann and Platzner ’06]
— OMOEA Il [Liu et al. ’06] :
_ o ongoing
— IBEA [Zitzler and KUnzli '04]
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Evolvable Hardware — Estimation oiee"
Objectives

« area and speed estimation for the CGP model
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« more precise estimation by Xilinx backend tools
— transformation of CGP chromosomes to FPGA netlists using JHDL

— useful for experimentation, but runtimes and memory requirements are
prohibitive for intrinsic evolution

September 13, 2007 8



Evolvable Hardware — Test Problem@@

 functions with correctness property
— arithmetic and logic functions, e.g. adder, multiplier, parity, ...
— popular test functions for comparing representation models and algorithms

> the evolutionary design of such functions is not our primary target, as here
classically engineered solutions might be sufficient

 functions without correctness property
— the functional quality depends on (changing) input data
— a-priory or optimal solutions are unknown
— e.g. classificator, cache controller, robot navigation controller, ...
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MOVES Framework

© generic evolutionary algorithm modules
— representation models
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of experiment runs

— interface to grid computing
software Condor

« tools can be downloaded from the MOVES project page:
uni-paderborn.de/cs/ag-platzner/research/moves
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Evolvable Hardware — SoC

Architecture

 started implementation on reconfigurable system-on-chip

Oc

— initial hw/sw partitioning on a platform FPGA including CPU and logic

— partial reconfiguration, self-reconfiguration

 in software (PowerPC)
— CGP representation model
— GA and SPEA2

* In hardware

instantiated solution

time-consuming functions,
e.g.. k-th nearest neighbor
clustering of SPEA2
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Case Study: EMG Signal ee'
Classificator (1)

- started to develop a self-adaptive EMG signal classificator for
prosthetic hand control

* two models of evolution Signal Features ™

— off-line,
during training phases e

Sensors

— online,
in parallel to the operation

e current system setup
— PC with attached EMG sensors, amplifiers and A/D converters
— evolvable hardware classifier simulated on the PC
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Case Study: EMG Signal Classifica
(2)

- EMG classificators require self-adaptation due to ...
— varying sensor positions
— varying skin conductance
— cross talking of neighbor muscles
— heart-beat noise
— muscle fatigue
— movement patterns change over time
— varying electronic (analog) component parameters
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Collaborations & e@,

Publications

« Prof. Dr. Jim Tgrresen, University of Oslo
— scalability, resource-aware EHW SoC, classification architectures
— supported by DAAD

« PD Dr. Bernhard Sick, University of Passau

— classification of EMG signals

* Prof. Dr. Hartmut Schmeck, University of Karlsruhe
— approaches for evolvable hardware

- Paul Kaufmann and Marco Platzner. Multi-objective Intrinsic Hardware Evolution. Proc. International
Conference on Military Applications of Programmable Logic Devices (MAPLD), Washington, DC,
September, 2006.

«  Paul Kaufmann and Marco Platzner. Toward Self-adaptive Embedded Systems: Multi-objective
Hardware Evolution. Proc. International Conference on Architecture of Computing Systems (ARCS),
Zurich, March 12-15, 2007.

«  Paul Kaufmann and Marco Platzner. MOVES: A Modular Framework for Hardware Evolution. Proc.
NASA/ESA Conference on Adaptive Hardware and Systems (AHS), Edinburgh, August 4-9, 2007.

— received best paper award in the "Evolvable Hardware" category
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Summary and Main 9@'

Challenge

°* summary
— investigated models for digital circuit representation: CGP and ECGP
— benchmarked a set of multi-objective optimizers for digital circuit design
— created a tool suite for efficiently experimenting with models and algorithms
— partially implemented a self-adaptive SoC architecture
— first experiments with an evolvable classifier for prosthetic hand control

* main challenge: scalability
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Overview

« current and future topics (phase Il)

1. models and algorithms
* address the scalability problem
» investigate models for evolutionary self-adaptation
2. system-on-chip architecture
- implement complete adaptive SoC architecture
3. case studies and evaluation
 intrinsic implementation of the prosthetic hand controller

* investigate autonomous robot control and navigation
September 13, 2007
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Oc

Models and Algorithms

* novel representation model: multi-granular embedded CGP
— use simple and complex building blocks
— incorporate domain- and problem-specific knowledge

\([D fine-grained
logic
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[] organ

output
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a» bus

 constrain model parameters for
— reducing the search space
— efficient mapping to hardware
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SoC Architecture ee'

« develop a library of parametrizable hardware modules
— that match the objects of the representation model (e.g.. LUTs, arithmetic units, ...)

— that can be dynamically instantiated on the FPGA
 "virtual" FPGA vs. partial reconfiguration

 investigate observer/controller architecture for critical applications
— observe critical states
* recognize unsafe outputs
 use additional sensor information
— react to critical states
* emergency stop
* instantiate fall-back solution
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Case Study: Robot Control and -
Navigation ee'

- develop self-adaptive evolvable hardware (EHW) robot controllers

— integrate such "EHW agents" into EyeSim, a simulation environment for the
EyeBot robot platform

 investigate different models for evolutionary self-adaptation

— e.g.. embedded circuit design, self-adaptive, self-triggered, online evolution
(after [Sekanina '04])

— issues: how to gather test data, how to define fitness, how to validate the
evolved functions

EyeSim

September 13, 2007 19



Oc

Thank you for your attention!



