

A. Bouajila, A. Bernauer, J. Zeppenfeld, W. Stechele, O. Bringmann, A. Herkersdorf, W. Rosenstiel

Technische Universität München

Project Reminder

Overview

- 2nd year Phase 1 results
 - Self-healing CPU pipeline
 - Self-healing Bus
 - Reliability estimation
- Planned work for Phase 2
 - Monitors for balanced Power Performance Reliability
 - HW/SW Implementation concept for an SoC LCS
 - Autonomic Element Interconnect
 - ASoC simulator and prototype
- Summary & Cooperations

Self-healing CPU Pipeline [VLSI06]

- Error detection using Nicolaidis shadow registers
- History registers keep track of latest pipeline stage registers
- No pipeline flushing necessary \rightarrow fixed 2-cycle penalty
- Implemented in Leon2 processor (23% area overhead in Virtex II Pro)

Extension for Bus Protection

- Detection with shadow register technique
 - Where to insert?
 - Bus ends

Extension for Bus Protection

- Detection with shadow register technique
 - Where to insert?
 - Bus ends
 - Primary inputs

Extension for Bus Protection

- Detection with shadow register technique
 - Where to insert?
 - Bus ends
 - Primary inputs
- Correction via triplication
 - Avoid retransmission
 - Rollback difficult since bus is not simple pipeline
 - Triplication of registers only
 - Similar area overhead and fault coverage as history registers

Bus Protection Prototype

- Implemented for the Processor Local Bus on a Xilinx Virtex II Pro FPGA
- Pseudorandom fault insertion using an LFSR
- All single errors are properly detected and corrected
- Correction occurs in bus interface, transparently to IP

	No Protection	Triplication for	ECC for data
			Signals
DCMs	1	3	1
Slices	695	1017 (46%)	876 (26%)
Slice FFs	647	1159 (79%)	685 (6%)
4-LUTs	994	1251 (26%)	1255 (26%)

September 14, 2007

Application-dependent Reliability estimation

Experimental Results

Allows application-dependent reliability comparison of different design alternatives

September 14, 2007

Goals for phase 2

- Two parts in learning: design time and run time
- Design time: learning initial (general) rule set
- Run time: adapting rule set to individual chip

Phase 2 Work Packages

September 14, 2007

A1/B1: Performance monitors

- Identification of suitable performance monitors
- Evaluation of the benefits and feasibility of such monitors
 Examples: CPU (idle loops), Bus (busy signal)..
- Run-time SW tasks monitoring (check point insertions)

September 14, 2007

• Learning Classifier Systems: [Holland78, Wilson95, Butz06]

September 14, 2007

A3: Autonomic element interconnect

- Autonomic and functional interconnects: two different mediums (otherwise complexity problem, interference avoidance)
- Structure of the autonomic interconnect: serial ring looks adequate
- Interconnect should be:
 - Scalable: run-time addition/removal of an AEs
 - Reliable: ECC, retransmission, dual rail..

With a 32-bit word register per node:

- Average latency: 11 µs
- Data bandwidth : 1.6 Mb/s
- 24414 Classifier Table updates/s

September 14, 2007

ASoC - Architecture and Design Methodology - DFG SPP 1183

Autonomic

Element

FUNCTIONAL Layer

AUTONOMIC Layer

Functional

Element

A4/B4: ASoC prototype

- Dealing with Defects
 - AEs detect and disable faulty:
 - System Components
 - Interconnect Resources
- Performance and power optimization
 - (De-)Activate redundant IPs
 - Scale voltage / frequency
 - Adjust amount of data
 - Image size
 - Frame rate
 - Scale bus capacity
 - Prioritize transfers

A4/B4: ASoC prototype

- SystemC based simulator
 - Simulate initial LCS rule-set
 - Validate the HW/SW LCS implementation
 - Preliminary system evaluation and validation
- FPGA based demonstrator:
 - IPs will be augmented with reliability and performance optimizations
 - at least three Leon3 CPUs
 - Bus interconnect
 - Memory controller
 - Mac
 - Different AEs connected with AE interconnect

Summary

- Balanced Power Performance Reliability optimizations
- Integrating design-time/ run-time learning capabilities to SoC
 - HW/SW implementation of an LCS
 - Distributed AEs
- Validate new ASoC concepts with SystemC simulator and FPGA demonstrator

Cooperations

- Team of Prof. Reif
 - Verification of self-x properties based on logic model
 - Tools for reliability estimations
- Team of Prof. Fey
 - Marching pixels as an application to reliable design
- Teams of Prof. Müller-Schloer/ Prof. Schmeck
 - LCS concept and implementation
- Team of Prof. Maehle/Prof. Brockmann
 - Cooperation on HW/SW Learning
- Team of Prof. Ernst
 - Performance analysis
- DodOrg team in Karlsruhe (Prof. Becker, Prof. Karl, Prof. Brinkschulte, Prof. Henkel)
 - Monitoring, processing elements, middleware

September 14, 2007

Publications

- [BICC06] A. Bouajila, A. Bernauer, A. Herkersdorf, W. Rosenstiel, O. Bringmann, and W. Stechele. *Error Detection Techniques Applicable in an Architecture Framework and Design Methodology for Autonomic SoC*. In IFIP International Federation for Information Processing, Biologically Inspired Cooperative Computing. August 2006.
- [VLSI06] A. Bouajila, J. Zeppenfeld, W. Stechele, A. Herkersdorf, A. Bernauer,O. Bringmann, and W. Rosenstiel. *Organic Computing at the System-on-Chip Level*. In VLSI-SoC, October 2006. Invited paper.
- [OC06] A. Bernauer, O. Bringmann, W. Rosenstiel, A. Bouajila, W. Stechele, and A. Herkersdorf. An Architecture for Runtime Evaluation of SoC Reliability. In Organic Computing Workshop, October 2006,.
- [Lipsa05a] G. Lipsa, A. Herkersdorf, W. Rosenstiel, O. Bringmann, W. Stechele. *Towards a Framework and a Design Methodology for Autonomic SoC*, 2nd IEEE International Conference on Autonomic Computing (ICAC-05), 13-16 June, Seattle, USA
- [Lipsa05b] G. Lipsa, A. Herkersdorf, W. Rosenstiel, O. Bringmann, Walter Stechele. *Towards a Framework and a Design Methodology for Autonomic SoC*, Proceedings Dynamically Reconfigurable Systems, Self-Organization and Emergence, Architecture of Computing Systems (ARCS) 2005, pages 101-108.

- [ZuD] W. Stechele et al., Autonomic MPSoCs for Reliable Systems. In: Zuverlässigkeit und Entwurf, GMM-Fachbericht, VDE Verlag, Munich 2007.
- [DSD] A. Lankes et al., *Power estimation of Variant SoCs with TAPES.* In: Euromicro- DSD 2007.
- [edaworkshop] W. Stechele, *Concepts for Autonomic Integrated Systems. lin:* edaWorkshop, Hannover, 2007.
- [Dag06a] A. Herkersdorf, *Relevance of Organic Computing for*
 - *System on Chip Architectures.* In: International Conference and Research Center for Computer Science, Schloss Dagstuhl, Seminar 06031 "Organic Computing Controlled Emergence", January 15-20, 2006.
- [Dag06b] O. Bringmann, Autonomic A System Level Design Methodology for Organic Systems-on-Chip. In: International Conference and Research Center for Computer Science, Schloss Dagstuhl, Seminar 06031 "Organic Computing – Controlled Emergence", January 15-20, 2006.

September 14, 2007

Thanks for your attention

September 14, 2007