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ASoC Highlights

• Concepts
– Applying machine-learning techniques during SoC design flow

and on chip with moderate resource overheads

– Extension of functional components by autonomic elements

– Adaptation of XCS to LCT

• Evaluation
– Rule generation, translation and selection strategies 

– Effect and benefits of relative vs. absolute rules

– Extended theoretical work of XCS for complex problems

– Distributed learning on multi-core chips

• Prototype
– Multi-core Leon3-based hardware demonstrator

– Graphical interface for interactive evaluation of results

– AE interconnect for sharing of global data between AEs
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ASoC Highlights: Concepts

• Employ bio-inspired principles 

for autonomic performance, 

power and reliability optimization

– Functional layer containing 
typical SoC components

– Autonomic layer that provides 
various self-x properties

• Develop design flow that incor-

porates autonomic capabilities 

• Adapt XCS to allow for fast, 

hardware-optimized learning at 

run time
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ASoC Highlights: Evaluation

• Development of SystemC-based 

simulator for high-level evalua-

tion of autonomic concepts

• Exploration of:

– Various system configurations

– Various rule selection strategies

– Relative vs. absolute rules

• Generation of an initial rule set

– Create an initial rule set during 
design time using full XCS

– Translate the initial rule set for 
use in the run-time system

– Continue learning at run-time to 
react to unforeseen events

• Distributed learning in multi-core 

systems
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ASoC Highlights: Prototype

• Leon3-based multi-core FPGA 

prototype for the evaluation of 

concepts on a physical system

• Verification of high-level 

simulation results on actual 

hardware

• Exploration of:

– Autonomic adjustment of 
frequency and task distribution 
under changing workloads

– Global vs. local optimization

– Various aspects of run-time 
learning
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Phase 3 Work Packages

Caveats of 
Runtime 
Learning
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Combating Noise

• Caveats of digital systems

– Monitor precision is discrete, resulting in fluctuations

– Perfect parameterization is physically not possible

• System dynamics are a challenge

– Doing the same thing in the same (measured) situation
does not always yield the same (measured) result

– Even more complex when multiple components interact

– Precision of objective function (and reward / fitness) suffers

• Use of a tolerant reward function

– Stepwise to ensure strong differen-
tiation between good and bad rules

– Possibility to give no reward
when indecisive
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Learning Rate – β

• Indicates influence of reward on fitness

– FitnessT = β·RewardT + (1−β)·FitnessT−1

• β ~ 0: better averaging of noise

• β ~ 1: fast learning

β = 6.25% β = 25%
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Phase 3 Work Packages

Ensuring 
Usability
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Ensuring Usability

• Actions should be reversible

– Occasional actions by bad rules should only have temporary effect

• Covering must be ensured by initial ruleset
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Stability Considerations

• Changing parameters does not mean the system is 

unstable

– Learning requires trying out new things

– Oscillations around an unreachable “perfect” operating state

• Many small steps are better than few large ones

+ Large steps can theoretically reach a target state more quickly

− However, trying out large steps can have stronger side effects
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Phase 3 Work Packages

Distributed 
Learning
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Distributed Learning

• Sharing of rules between design- and run-time

• Distribution of rules among AEs
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Distributed XCS: Experimental Setup

• Simulation of Cell processor

– Goal: maximize frequency, avoiding temperature-dependent timing errors

– Variations in load and ambient temperature

• Two learning phases: design- and run-time

• Explore

– Communication topologies

uni-, bidirectional, complete graph

– Classifier migration strategies

random, numerosity, fitness,
prediction error

– Classifier deletion strategies

prediction error, fitness

Topologies of communicating XCS
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Distributed XCS: 10-Core Extension

• Procedure

① Explore using 5-core model ✔

② Apply best strategies to 10-core model

5-core model

SXU5 SXU6 SXU7 SXU8 SXU9

10-core model

• Migration strategy:

Emigrate by fitness

• Deletion strategy:

Deletion by prediction Error

Best configuration

[ICAC2011b]
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Distributed XCS: Results
10-core model, topology with 3 neighbors

r = 0.05 r = 0.10 r = 0.20

Thermal convection resistance:

[ICAC2011b]
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Distributed XCS: Results
10-core model, topology with 5 neighbors

r = 0.05 r = 0.10 r = 0.20

Thermal convection resistance:

[ICAC2011b]
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Distributed XCS: Results
10-core model, topology with 9 neighbors

r = 0.05 r = 0.10 r = 0.20

Thermal convection resistance:

[ICAC2011b]
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Phase 3 Work Packages

Demonstrator



15.9.2011 ASoC - Architecture and Design Methodology for SoC 20

Demonstrator

• Leon3-based FPGA prototype

– 3 cores with independent AEs

– Network support using LwIP

– Various tasks to generate 
workload

• GUI for online interaction and 

visualization of results
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Synthesis results for Xilinx Virtex 4 VLX100,

overhead % calculated from FPGA slices
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Possibilities for Further Work

• Interoperability between ASoC and OS

– Allow AE to make use of task migration capabilities of OS

– Give AE more action possibilities for migrating tasks 

– Possible solution to the irreversible task migration problem

• Extension of ASoC prototype to more cores

– Hierarchically structured system of both functional and autonomic 
elements

– Differentiation of local and system-wide actions and goals

• Autonomic elements for other functional components

– Possibilities include bus, memory controller, I/O, etc.

• Action timing

– Better handling of monitors that take a long time to react to actions

– Allow overlapping actions instead of forced delays
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Summary

• ASoC: From concept to prototype
– Make use of distributed machine learning techniques within the 

hardware confines of a system on chip

– Consider autonomic enhancements during the design process to 
provide the necessary configuration of the run-time system

• What ASoC can’t do
– Provide hard real-time guarantees in respect to performance

– Eradicate the need for design-time

• What ASoC can do
– Alleviate the burden on the designer by moving certain design-

time decisions to run-time

– Dynamically adapt to changing environments and operating 
modes

– Learn to cope with situations that were not intended by the 
designer, and in which ordinary systems would typically fail
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