
Architecture and Design Methodology for

Autonomic Systems-on-Chip (ASoC)

J. Zeppenfeld, A. Bernauer, S. Eisenhardt, A. Bouajila,

O. Bringmann, W. Stechele, W. Rosenstiel, A. Herkersdorf

Technische Universität München

Universität Tübingen

FZI - Forschungszentrum Informatik

15.9.2011 ASoC - Architecture and Design Methodology for SoC 2

ASoC Highlights

• Concepts
– Applying machine-learning techniques during SoC design flow

and on chip with moderate resource overheads

– Extension of functional components by autonomic elements

– Adaptation of XCS to LCT

• Evaluation
– Rule generation, translation and selection strategies

– Effect and benefits of relative vs. absolute rules

– Extended theoretical work of XCS for complex problems

– Distributed learning on multi-core chips

• Prototype
– Multi-core Leon3-based hardware demonstrator

– Graphical interface for interactive evaluation of results

– AE interconnect for sharing of global data between AEs

15.9.2011 ASoC - Architecture and Design Methodology for SoC 3

SW
HW

SW
HW

.24 3

.02 92

.17 15

Environment

Monitors Actuators

C A p ε F

#011 : 01 43 .01 99

11## : 00 32 .13 9

#0## : 11 14 .05 52

001# : 01 27

#0#1 : 11 18

1#01 : 10 24

D etc.

Population

[P]

#011 : 01 43 .01 99

#0## : 11 14 .05 52

001# : 01 27 .24 3

#0#1 : 11 18 .02 92

nil 42.5 nil 16.6

#011 : 01 43 .01 99

001# : 01 27 .24 3

Match Set

[M]
Prediction

Array

Action Set

[A]

0011 01

match

action

selection

reward

max

discount +

Previous Action Set

[A]-1

P
Update:

fitnesses,

errors,

predictions

Rule

Update

delay = 1

.24 3

.02 92

.17 15

Environment

Monitors Actuators

C A p ε F

#011 : 01 43 .01 99

11## : 00 32 .13 9

#0## : 11 14 .05 52

001# : 01 27

#0#1 : 11 18

1#01 : 10 24

D etc.

Population

[P]

#011 : 01 43 .01 99

#0## : 11 14 .05 52

001# : 01 27 .24 3

#0#1 : 11 18 .02 92

nil 42.5 nil 16.6

#011 : 01 43 .01 99

001# : 01 27 .24 3

Match Set

[M]
Prediction

Array

Action Set

[A]

0011 01

match

action

selection

reward

max

discount +

Previous Action Set

[A]-1

P
Update:

fitnesses,

errors,

predictions

Rule

Update

delay = 1

ASoC Highlights: Concepts

• Employ bio-inspired principles

for autonomic performance,

power and reliability optimization

– Functional layer containing
typical SoC components

– Autonomic layer that provides
various self-x properties

• Develop design flow that incor-

porates autonomic capabilities

• Adapt XCS to allow for fast,

hardware-optimized learning at

run time

Application
Requirements &
Characteristics

Architecture
Characteristics

FE/AE
Parameter Selection

FE/AE
Model

Evaluation

A
rc

h
it
e
c
tu

re
O

p
ti
m

iz
a
ti
o
n

Functional
SoC elements

Autonomic
SoC elements

Performance

Reliability Power

Performance

Reliability Power

FUNCTIONAL Layer

AUTONOMIC Layer

Autonomic

Element

Functional

Element

15.9.2011 ASoC - Architecture and Design Methodology for SoC 4

ASoC Highlights: Evaluation

• Development of SystemC-based

simulator for high-level evalua-

tion of autonomic concepts

• Exploration of:

– Various system configurations

– Various rule selection strategies

– Relative vs. absolute rules

• Generation of an initial rule set

– Create an initial rule set during
design time using full XCS

– Translate the initial rule set for
use in the run-time system

– Continue learning at run-time to
react to unforeseen events

• Distributed learning in multi-core

systems

ElaborationElaboration

Core

Modules

ASoCsim Core

Core

Modules

ASoCsim Core

Custom

Modules

Compile

Simulator

Executable

Compile

Simulator

Executable

Configuration

File

E
x
e
c
u
t
e

Configuration

File

E
x
e
c
u
t
e

Module

Description

Hierarchy

SystemC

Module

Hierarchy

SystemC

Module

Hierarchy

Port - Channel

Initialization

Port - Channel

Initialization

SimulationSimulation

System

Simulation

ReportingReporting

LoggingLogging

[BICC2010]

15.9.2011 ASoC - Architecture and Design Methodology for SoC 5

ASoC Highlights: Prototype

• Leon3-based multi-core FPGA

prototype for the evaluation of

concepts on a physical system

• Verification of high-level

simulation results on actual

hardware

• Exploration of:

– Autonomic adjustment of
frequency and task distribution
under changing workloads

– Global vs. local optimization

– Various aspects of run-time
learning

MEMUART

MAC

Core3

Bus

MEMUART

MAC

MEMUART

MACMAC

Core2

Condition Action Fitness

1
X

X

X
0

1

X
1

0

0
X

X

: 1001
: 1010

: 1100

11
3

15
.

Learning Classifier Table

Fitness
Update

Condition Action Fitness

1
X

X

X
0

1

X
1

0

0
X

X

: 1001
: 1010

: 1100

11
3

15

.

Learning Classifier Table

Fitness
Update

Core1

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

f o
b
je
c
ti
v
e
(t
)

[ICAC2011a]

15.9.2011 ASoC - Architecture and Design Methodology for SoC 6

Phase 3 Work Packages

Caveats of
Runtime
Learning

15.9.2011 ASoC - Architecture and Design Methodology for SoC 7

Combating Noise

• Caveats of digital systems

– Monitor precision is discrete, resulting in fluctuations

– Perfect parameterization is physically not possible

• System dynamics are a challenge

– Doing the same thing in the same (measured) situation
does not always yield the same (measured) result

– Even more complex when multiple components interact

– Precision of objective function (and reward / fitness) suffers

• Use of a tolerant reward function

– Stepwise to ensure strong differen-
tiation between good and bad rules

– Possibility to give no reward
when indecisive

1.0

1.0

0.5

OT

OT+1

R
(O

T
+

1
)

Indecisive Zone

15.9.2011 ASoC - Architecture and Design Methodology for SoC 8

Learning Rate – β

• Indicates influence of reward on fitness

– FitnessT = β·RewardT + (1−β)·FitnessT−1

• β ~ 0: better averaging of noise

• β ~ 1: fast learning

β = 6.25% β = 25%

A
v
g
.
F
re
q
u
e
n
c
y
 (
M
H
z
)

0

10

20

30

40

50

60

0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (sec)

15.9.2011 ASoC - Architecture and Design Methodology for SoC 9

Phase 3 Work Packages

Ensuring
Usability

15.9.2011 ASoC - Architecture and Design Methodology for SoC 10

Ensuring Usability

• Actions should be reversible

– Occasional actions by bad rules should only have temporary effect

• Covering must be ensured by initial ruleset

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

F
re
q
u
e
n
c
y
 (
M
H
z
)

F
re
q
u
e
n
c
y

C
o
re

No rules matching f = 6 MHz

15.9.2011 ASoC - Architecture and Design Methodology for SoC 11

Stability Considerations

• Changing parameters does not mean the system is

unstable

– Learning requires trying out new things

– Oscillations around an unreachable “perfect” operating state

• Many small steps are better than few large ones

+ Large steps can theoretically reach a target state more quickly

− However, trying out large steps can have stronger side effects

15.9.2011 ASoC - Architecture and Design Methodology for SoC 12

Phase 3 Work Packages

Distributed
Learning

15.9.2011 ASoC - Architecture and Design Methodology for SoC 13

Distributed Learning

• Sharing of rules between design- and run-time

• Distribution of rules among AEs

Design-time
rule set

Action

Fitness
update

Rule set
update

Initial
rule set

Run-time
rule set

Action

Fitness
update

Rule set
update

Rule-set translation

HW SW

Design-time learning (XCS)

Software

Run-time learning (LCT)

Hardware

Communicating
XCS

15.9.2011 ASoC - Architecture and Design Methodology for SoC 14

Distributed XCS: Experimental Setup

• Simulation of Cell processor

– Goal: maximize frequency, avoiding temperature-dependent timing errors

– Variations in load and ambient temperature

• Two learning phases: design- and run-time

• Explore

– Communication topologies

uni-, bidirectional, complete graph

– Classifier migration strategies

random, numerosity, fitness,
prediction error

– Classifier deletion strategies

prediction error, fitness

Topologies of communicating XCS

15.9.2011 ASoC - Architecture and Design Methodology for SoC 15

Distributed XCS: 10-Core Extension

• Procedure

① Explore using 5-core model ✔

② Apply best strategies to 10-core model

5-core model

SXU5 SXU6 SXU7 SXU8 SXU9

10-core model

• Migration strategy:

Emigrate by fitness

• Deletion strategy:

Deletion by prediction Error

Best configuration

[ICAC2011b]

15.9.2011 ASoC - Architecture and Design Methodology for SoC 16

Distributed XCS: Results
10-core model, topology with 3 neighbors

r = 0.05 r = 0.10 r = 0.20

Thermal convection resistance:

[ICAC2011b]

15.9.2011 ASoC - Architecture and Design Methodology for SoC 17

Distributed XCS: Results
10-core model, topology with 5 neighbors

r = 0.05 r = 0.10 r = 0.20

Thermal convection resistance:

[ICAC2011b]

15.9.2011 ASoC - Architecture and Design Methodology for SoC 18

Distributed XCS: Results
10-core model, topology with 9 neighbors

r = 0.05 r = 0.10 r = 0.20

Thermal convection resistance:

[ICAC2011b]

15.9.2011 ASoC - Architecture and Design Methodology for SoC 19

Phase 3 Work Packages

Demonstrator

15.9.2011 ASoC - Architecture and Design Methodology for SoC 20

Demonstrator

• Leon3-based FPGA prototype

– 3 cores with independent AEs

– Network support using LwIP

– Various tasks to generate
workload

• GUI for online interaction and

visualization of results

4.5%0/0399173AE IF

3.7%0/031864Actuators

1.3%0/011455Monitors

1.4%1/111666LCT

14.3%29/2102132122L3+AE

–28/189361749Leon3

%BRAM/mulLUTsFFs

Synthesis results for Xilinx Virtex 4 VLX100,

overhead % calculated from FPGA slices

15.9.2011 ASoC - Architecture and Design Methodology for SoC 21

Possibilities for Further Work

• Interoperability between ASoC and OS

– Allow AE to make use of task migration capabilities of OS

– Give AE more action possibilities for migrating tasks

– Possible solution to the irreversible task migration problem

• Extension of ASoC prototype to more cores

– Hierarchically structured system of both functional and autonomic
elements

– Differentiation of local and system-wide actions and goals

• Autonomic elements for other functional components

– Possibilities include bus, memory controller, I/O, etc.

• Action timing

– Better handling of monitors that take a long time to react to actions

– Allow overlapping actions instead of forced delays

15.9.2011 ASoC - Architecture and Design Methodology for SoC 22

Summary

• ASoC: From concept to prototype
– Make use of distributed machine learning techniques within the

hardware confines of a system on chip

– Consider autonomic enhancements during the design process to
provide the necessary configuration of the run-time system

• What ASoC can’t do
– Provide hard real-time guarantees in respect to performance

– Eradicate the need for design-time

• What ASoC can do
– Alleviate the burden on the designer by moving certain design-

time decisions to run-time

– Dynamically adapt to changing environments and operating
modes

– Learn to cope with situations that were not intended by the
designer, and in which ordinary systems would typically fail

15.9.2011 ASoC - Architecture and Design Methodology for SoC 23

Phase 3 Publications

• [ICAC11a] J. Zeppenfeld, A. Herkersdorf. Applying Autonomic Principles for Workload Management

in Multi-Core Systems on Chip, International Conference on Autonomic Computing, ICAC,

Karlsruhe, Germany, June 14-18, 2011.

• [ICAC11b] A. Bernauer, G. Arndt, O. Bringmann, W. Rosenstiel. Autonomous Multi-Processor-SoC

Optimization with Distributed Learning Classifier Systems XCS, International Conference on

Autonomic Computing, ICAC, Karlsruhe, Germany, June 14-18, 2011.

• [BICC10] A. Bernauer, J. Zeppenfeld, O. Bringmann, A. Herkersdorf, W. Rosenstiel. Combining

software and hardware LCS for lightweight on-chip learning, DIPES/BICC 2010, IFIP AICT 329,

p.279-290, Brisbane, Australia, September 20-23, 2010.

• [IJCNN10] B. Rakitsch, A. Bernauer, O. Bringmann, W. Rosenstiel. Pruning population size in XCS

for complex problems, International Joint Conference on Neural Networks at the World Congress on

Computational Intelligence (WCCI), Barcelona, Spain, July 18-23, 2010.

• [SORT10] J. Zeppenfeld, A. Bouajila, A. Herkersdorf, W. Stechele. Towards Scalability and

Reliability of Autonomic Systems on Chip, 1st IEEE Workshop on Self-Organizing Real-Time

Systems, Carmona, Spain, May 4, 2010.

• [ARCS10] J. Zeppenfeld, A. Herkersdorf. Autonomic Workload Management for Multi-Core

Processor Systems, ARCS, Hannover, Germany, February 22-25, 2010.

