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Self-* in Embedded Systems

> „Pervasive Computing at Large“
> Tiny computers in day-to-day devices

> Clothing,
> Kitchen devices,
> Buildings, …

> Self-Organization
> Manual administration

is impossible
> Tiny devices are mobile 

and not very reliable
> Self-Stabilization

> External sources can induce transient errors in the hardware
> Radio noise, solar radiation, voltage fluctuation, …

> Cost pressure on hardware manufacturing makes 
tiny computing devices less reliable, too
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Software Development 
Methodology for OC

Code

Stack Heap

Watchdog

Self-stabilizing
Machine

Application model

Self-stabilizing and safe implementations

Self-X compilerBack-annotation

> Self-stabilizing
algorithms

> Self-stabilizing
Turing Machine

> Monitoring
interfaces

> Reflection



Overview
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> Self-Stabilizing Controller
> Embedded systems
> MSP 430 controller

> Self-X Composition
> Composition challenge
> Example and evaluation

> Composite Events
> Distributed detection
> Self-organizing 

detector placement

> Conclusions



Towards a 
Self-stabilizing Controller
> Self-stabilizing automaton

> Adaptation of a 3-tape Turing Machine with I/O capabilities
> Addition of an energy concept to force the decay of old data
> This has shown theoretical feasibility

> Self-stabilizing virtual machine
> Stack machine approach, similar to Java or .NET
> Self-stabilizing data structures
> Assurance: After a transient fault, code is executed correctly 

again after a bounded time
> Approach: A watchdog resets the machine if the main loop is 

not reached in time

> Self-stabilization on the MSP 430 controller
> Realization of above assurance on real hardware
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Application Anatomy

> Anatomy of a networked sensor/actuator application

void main() {

while(true) {

ev = wait_for_event();

process_event(ev);

send_output();

reset_watchdog();

}  }

> For self-stabilization, the software has to return to the 
main loop in bounded time in any case after a transient fault

> Some faults can invalidate this assumption …
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MSP 430 Controller

> Frequently used for embedded systems
and sensor networks

> Possible temporary faults
> Bit errors in RAM (tackled by 

our self-stabilizing virtual machine)
> Bit errors in CPU registers
> Faulty execution of CPU instructions

> Execution of unintended CPU instructions
> PC register points to the data field of a CPU instruction
> This may lead to an unintended infinite loop
> However, the watchdog timer can rescue the system

> Worst case scenario
> Unintended infinite loop resets the watchdog in each iteration
> Self-stabilization would no longer be possible
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Unintended Infinite Loops
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> Unintended loop is entered due to corrupted PC register
> This loop is only critical if it continuously resets the watchdog 



Unintended Watchdog Reset

16.09.2011 DFG SPP 1183 ORGANIC COMPUTING 9

> Correct execution: Opcodes at 0x4100, 0x4104, 0x410a
> Unintended execution: Opcode at 0x4102 (watchdog reset)

followed by an unintended JMP at 0x4108



Solutions

> Unintended loop detection
> Find all possible unintended loops
> Ensure that the CPU returns to correct instructions eventually

by inserting NOPs
> An inserted NOP ensures that an unintended JMP targets the 

NOP instead of the data field of an operation

> Optimized unintended loop detection
> Cure only loops which reset the watchdog
> Limits the number of inserted NOPs

> Watchdog protection
> Prevent unintended code from resetting the watchdog
> Elegant solution, but not possible for all hardware architectures
> Possible for the MSP 430 (again by inserting NOPs)
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Breaking Unintended
Infinite Loops
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Prevention of Unintended 
Watchdog Reset
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Self-X Algorithms

> Switches between different 
routing schemes for each link 
(flooding vs. filtering)

> Connects sub-topologies 
with similar interests
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> Keeps the overlay
connected when a 
broker crashes

Pub

Sub

Self-Optimizing Routing (SOR) Self-Optimizing Topology (SOT)

Fault Tolerant Topology (FTT)
crash shortcut

reconfiguration



Composition of Self-X Algorithms

> Superimposed QoS feedback loops

> Dependency analysis shows conflict in overlay reconfiguration
> Conflict Resolution

> Transaction scheme for SOT to deal with broker crashes (FTT)
> Support for connecting arbitrary topologies with SOR
> Mutual blocking of SOT and SOR
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Composition of Self-X Algorithms

> Preserves properties of composed algorithms
> Achieves higher performance than each single algorithm
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SOT

SOR

reconfiguration
overhead
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Event Patterns

Event patterns
> Application roles communicate 

by exchanging notifications via 
publish/subscribe

> Actions are often triggered only 
if several conditions are met 
 event patterns

Application level detection 
of event patterns
> Candidate notifications must 

be forwarded to application
> Notification traffic concentrates 

at event sinks  bottlenecks
> Majority of notifications are 

forwarded unnecessarily
Room 2

Σ Σ

Σ

Room 1

Hidden application
constraints on 

events A and B

A

BA
B

Addition of noti-
fication streams



Composite Event Detection
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> Event composition at middleware level
> Replaces/complements pattern recognition at application 

level to enable efficient distributed pattern detection
> Patterns are specified by composition algebra 

(definition, visibility, reusability)

> Four basic detector operations based on 
composition algebra used for optimization
Decomposition
> Hierarchical decomposition 

of a detector into 
constituent subpatterns

Recombination 
> Dissolve no longer useful detectors 

and recombine them with others

Migration
> Early filtering by 

seamless migration of detectors 
along the event stream

Replication
> Divide event space into 

disjoint domains



Force Model

> Heuristic based on relaxing forces due to 
dynamically changing environment
> Gradually optimizes placement using 

local knowledge and basic detector operations
> Balances responsiveness and stability

> Model system as compensating forces 
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Selectivity
> Indicates potentially 

saved forwarding costs
> Pull detectors towards 

sources or sinks
> Migration or decomposition 

with replication depends on 
the number of pulling forces

selectivity selectivity

selectivity

costscosts

costs

Costs
> Storage utilization, 

migration costs
> Pull related detectors 

together  recombination

Friction
> Counter oscillations but 

keep system responsive
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Simulation

> Discrete event 
simulation of detector 
placement strategy

> Network consumption 
 width of lines

> Computational load 
 area of red dots

> Shows 
decomposition, 
migration and 
recombination
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Conclusions
> MODOC allows for engineering

of distributed control-applications
> Comprehensive tool chain 

supporting modeling, code 
generation, deployment and 
debugging of OC applications

> MODOC provides self-organization 
and self-stabilization
> Self-stabilizing controller and 

virtual machine
> Self-organizing and self-optimizing

publish/subscribe infrastructure
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Discussion
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