
Model-driven Development of
Self-organizing Control Applications
(MODOC)

Prof. Dr.-Ing. Torben Weis
Dr. Arno Wacker
Dipl.-Inform. Sebastian Holzapfel
Dipl.-Inform. Christopher Boelmann
Universität Duisburg-Essen

Prof. Dr. Hans-Ulrich Heiß
Dr.-Ing. Jan Richling
Dipl.-Ing. Arnd Schröter
Technische Universität Berlin

Prof. Dr.-Ing. Gero Mühl
Dipl.-Inform. Helge Parzyjegla
M.Sc. Enrico Seib
Universität Rostock

Self-* in Embedded Systems

> „Pervasive Computing at Large“
> Tiny computers in day-to-day devices

> Clothing,
> Kitchen devices,
> Buildings, …

> Self-Organization
> Manual administration

is impossible
> Tiny devices are mobile

and not very reliable
> Self-Stabilization

> External sources can induce transient errors in the hardware
> Radio noise, solar radiation, voltage fluctuation, …

> Cost pressure on hardware manufacturing makes
tiny computing devices less reliable, too

16.09.2011 DFG SPP 1183 ORGANIC COMPUTING 2

7 October 2010 DFG 1183 ORGANIC COMPUTING 3

Software Development
Methodology for OC

Code

Stack Heap

Watchdog

Self-stabilizing
Machine

Application model

Self-stabilizing and safe implementations

Self-X compilerBack-annotation

> Self-stabilizing
algorithms

> Self-stabilizing
Turing Machine

> Monitoring
interfaces

> Reflection

Overview

16.09.2011 DFG SPP 1183 ORGANIC COMPUTING 4

> Self-Stabilizing Controller
> Embedded systems
> MSP 430 controller

> Self-X Composition
> Composition challenge
> Example and evaluation

> Composite Events
> Distributed detection
> Self-organizing

detector placement

> Conclusions

Towards a
Self-stabilizing Controller
> Self-stabilizing automaton

> Adaptation of a 3-tape Turing Machine with I/O capabilities
> Addition of an energy concept to force the decay of old data
> This has shown theoretical feasibility

> Self-stabilizing virtual machine
> Stack machine approach, similar to Java or .NET
> Self-stabilizing data structures
> Assurance: After a transient fault, code is executed correctly

again after a bounded time
> Approach: A watchdog resets the machine if the main loop is

not reached in time

> Self-stabilization on the MSP 430 controller
> Realization of above assurance on real hardware

16.09.2011 DFG SPP 1183 ORGANIC COMPUTING 5

Application Anatomy

> Anatomy of a networked sensor/actuator application

void main() {

while(true) {

ev = wait_for_event();

process_event(ev);

send_output();

reset_watchdog();

} }

> For self-stabilization, the software has to return to the
main loop in bounded time in any case after a transient fault

> Some faults can invalidate this assumption …

16.09.2011 DFG SPP 1183 ORGANIC COMPUTING 6

MSP 430 Controller

> Frequently used for embedded systems
and sensor networks

> Possible temporary faults
> Bit errors in RAM (tackled by

our self-stabilizing virtual machine)
> Bit errors in CPU registers
> Faulty execution of CPU instructions

> Execution of unintended CPU instructions
> PC register points to the data field of a CPU instruction
> This may lead to an unintended infinite loop
> However, the watchdog timer can rescue the system

> Worst case scenario
> Unintended infinite loop resets the watchdog in each iteration
> Self-stabilization would no longer be possible

16.09.2011 DFG SPP 1183 ORGANIC COMPUTING 7

Unintended Infinite Loops

16.09.2011 DFG SPP 1183 ORGANIC COMPUTING 8

> Unintended loop is entered due to corrupted PC register
> This loop is only critical if it continuously resets the watchdog

Unintended Watchdog Reset

16.09.2011 DFG SPP 1183 ORGANIC COMPUTING 9

> Correct execution: Opcodes at 0x4100, 0x4104, 0x410a
> Unintended execution: Opcode at 0x4102 (watchdog reset)

followed by an unintended JMP at 0x4108

Solutions

> Unintended loop detection
> Find all possible unintended loops
> Ensure that the CPU returns to correct instructions eventually

by inserting NOPs
> An inserted NOP ensures that an unintended JMP targets the

NOP instead of the data field of an operation

> Optimized unintended loop detection
> Cure only loops which reset the watchdog
> Limits the number of inserted NOPs

> Watchdog protection
> Prevent unintended code from resetting the watchdog
> Elegant solution, but not possible for all hardware architectures
> Possible for the MSP 430 (again by inserting NOPs)

16.09.2011 DFG SPP 1183 ORGANIC COMPUTING 10

Breaking Unintended
Infinite Loops

16.09.2011 DFG SPP 1183 ORGANIC COMPUTING 11

Prevention of Unintended
Watchdog Reset

16.09.2011 DFG SPP 1183 ORGANIC COMPUTING 12

Self-X Algorithms

> Switches between different
routing schemes for each link
(flooding vs. filtering)

> Connects sub-topologies
with similar interests

16.09.2011 DFG SPP 1183 ORGANIC COMPUTING 13

> Keeps the overlay
connected when a
broker crashes

Pub

Sub

Self-Optimizing Routing (SOR) Self-Optimizing Topology (SOT)

Fault Tolerant Topology (FTT)
crash shortcut

reconfiguration

Composition of Self-X Algorithms

> Superimposed QoS feedback loops

> Dependency analysis shows conflict in overlay reconfiguration
> Conflict Resolution

> Transaction scheme for SOT to deal with broker crashes (FTT)
> Support for connecting arbitrary topologies with SOR
> Mutual blocking of SOT and SOR

16.09.2011 DFG SPP 1183 ORGANIC COMPUTING 14

Composition of Self-X Algorithms

> Preserves properties of composed algorithms
> Achieves higher performance than each single algorithm

16.09.2011 DFG SPP 1183 ORGANIC COMPUTING 15

SOT

SOR

reconfiguration
overhead

16.09.2011 DFG SPP 1183 ORGANIC COMPUTING 16

Event Patterns

Event patterns
> Application roles communicate

by exchanging notifications via
publish/subscribe

> Actions are often triggered only
if several conditions are met
 event patterns

Application level detection
of event patterns
> Candidate notifications must

be forwarded to application
> Notification traffic concentrates

at event sinks bottlenecks
> Majority of notifications are

forwarded unnecessarily
Room 2

Σ Σ

Σ

Room 1

Hidden application
constraints on

events A and B

A

BA
B

Addition of noti-
fication streams

Composite Event Detection

16.09.2011 DFG SPP 1183 ORGANIC COMPUTING 17

> Event composition at middleware level
> Replaces/complements pattern recognition at application

level to enable efficient distributed pattern detection
> Patterns are specified by composition algebra

(definition, visibility, reusability)

> Four basic detector operations based on
composition algebra used for optimization
Decomposition
> Hierarchical decomposition

of a detector into
constituent subpatterns

Recombination
> Dissolve no longer useful detectors

and recombine them with others

Migration
> Early filtering by

seamless migration of detectors
along the event stream

Replication
> Divide event space into

disjoint domains

Force Model

> Heuristic based on relaxing forces due to
dynamically changing environment
> Gradually optimizes placement using

local knowledge and basic detector operations
> Balances responsiveness and stability

> Model system as compensating forces

16.09.2011 DFG SPP 1183 ORGANIC COMPUTING 18

Selectivity
> Indicates potentially

saved forwarding costs
> Pull detectors towards

sources or sinks
> Migration or decomposition

with replication depends on
the number of pulling forces

selectivity selectivity

selectivity

costscosts

costs

Costs
> Storage utilization,

migration costs
> Pull related detectors

together recombination

Friction
> Counter oscillations but

keep system responsive

16.09.2011 DFG SPP 1183 ORGANIC COMPUTING 19

Simulation

> Discrete event
simulation of detector
placement strategy

> Network consumption
 width of lines

> Computational load
 area of red dots

> Shows
decomposition,
migration and
recombination

16.09.2011 DFG SPP 1183 ORGANIC COMPUTING 20

Conclusions
> MODOC allows for engineering

of distributed control-applications
> Comprehensive tool chain

supporting modeling, code
generation, deployment and
debugging of OC applications

> MODOC provides self-organization
and self-stabilization
> Self-stabilizing controller and

virtual machine
> Self-organizing and self-optimizing

publish/subscribe infrastructure

16.09.2011 DFG SPP 1183 ORGANIC COMPUTING 21

Discussion

Thanks for your kind attention.

Prof. Dr. Gero Mühl
Architecture of Application Systems
University of Rostock
gero.muehl@uni-rostock.de

http://wwwava.informatik.uni-rostock.de

