
September 15, 2011

Multi-Objective Intrinsic Evolution
of Embedded Systems (MOVES)

 Paul Kaufmann, Marco Platzner
 Computer Engineering Group
 University of Paderborn
{paul.kaufmann, platzner}@uni-paderborn.de

1

September 15, 2011 2

Outline
•  motivation/vision

•  ! to last status meeting

•  Reconfiguration schemes for EHW classifier

•  publications, collaborations

September 15, 2011 3

Motivation / Vision

•  investigate simulated evolution as a mechanism to achieve self-
adaptation and –optimization for autonomous embedded systems

•  an embedded system should be capable of adapting to !
–  the environment
–  changes in resources

•  adaptability achieved by combining intrinsic evolution with reconfigurable
hardware (evolvable hardware, EHW)

•  working areas

1.  models and algorithms
2.  system architectures
3.  case studies, evaluation

September 15, 2011 4

! to Last Status Meeting
•  last status meeting

–  evolutionary algorithms
•  periodization of local and global search [Kaufmann et al., CEC '10]

–  evolvable hardware architecture
•  EHW classifier adaptation [Knieper et al., ICES '10]

–  application examples
•  prosthetic hand controllers [Kaufmann et al., EMBC ’10]

•  new work done
–  evolvable hardware architecture

•  reconfiguration schemes for [Kaufmann et al., IJARAS ’11, to app.]
EHW classifiers

–  application examples
•  lower-limb gait detection [Boschmann et al., ICBBT ’11]

–  algorithms & applications [Miller (ed.), Cartesian Genetic
 Programming, Springer]

chosen. One data element is thus selected from the input bits,

!"#$%
#&%%'("

)&%'*+(,
)-&..!/!)&%!+"

012334540264789:7;<1=

/!%"'..%(&!"!"*
#&%%'(".

=>21<26478
:7;<1=

)+"/!*$(&%!+"

0?<

)+"/!*$(&%!+"
@

78148=9=>71>2A1=93B36=:967?C1=>=19>4=D

0;:

0;:

0;: :
2
EF

;
=
6
=
0
6
7
G

H

I

J

I
N
P
U
T

I
N
T
E
R
F
A
C
E

O
U
T
P
U
T

I
N
T
E
R
F
A
C
E

402?)+"/!*$(&%!+"

Functional Unit Row (FUR) Architecture

September 15, 2011 5

–  by Glette & Torresen [Glette’06]
–  Virtual Reconfigurable Circuit, i.e.

reconfiguration through
registers / mux controls

Functional Unit Row Architecture (1)

•  FUR architecture comprises a Category Detection Module (CDM) for each
category to be classified

•  CDM contains a number of basic pattern matching elements (CC)
•  category with most activated pattern matching elements defines classifier’s

decision
September 15, 2011 6

�

�

�

...

max

in
pu
t

decision

CDM

CCs

Functional Unit Row Architecture (2)

•  Category Classifier (CC) decides, if the given input vector corresponds to its
category

•  Functional Unit (FU) implements a decision rule
•  CC is a conjunction of a number of decision rules

September 15, 2011 7

FU1 ...FU2 FUn

AND

input pattern

�

...

Functional Unit Row Architecture (3)

•  Functional Unit (FU) compares a selected input value to a constant
–  similar to Decision Trees

•  FU configuration is subject to evolutionary optimization
–  selection of the input value, reference constant, function selection

September 15, 2011 8

input
pattern

a > c M
UX

configuration

M
UX

input selection

function
selection

a

c

constant

FUR’s Fitness Definition

•  n – number of categories and Category
Detection Modules (CDM)

•  V=(v,l) – labeled / classified input vectors

September 15, 2011 9

�

�

�

...
max

in
pu
t

decision

CDM

CCs

EHW Classifier Adaptation

•  previous work:
–  FUR architecture applied to classification of electromyographic signals

•  [Glette, Kaufmann, Torresen, Platzner: ICES’08]
•  [Glette, Gruber, Kaufmann, Torresen, Sick, Platzner: AHS’08]

–  investigation of run-time reconfigurable FUR architectures
•  [Knieper, Kaufmann, Glette, Platzner, Torresen: ICES’10]
•  [Kaufmann, Glette, Platzner, Torresen: IJARAS’11]

−  new work: improve classification behaviour during architectural
reconfigurations
−  questions:

•  how large are the accuracy drops during architectural reconfigurations?
•  what kind of strategies can be used to reduce the impact of architectural

reconfigurations?

September 15, 2011 10

Reconfigurable FUR Architecture

•  reconfigurable FUR architecture shows two degrees of freedom
–  number of FUs in a CC

•  depends largely on the application
–  number of CCs in a CDM

September 15, 2011 11

CC 1

CC 2

CC M

CDM 1 CDM 2 CDM C

...

... ...CC 1

CC 2

CC M

...

CC 1

CC 2

CC M

...

CC M+1 CC M+1 CC M+1
...

add CCs

remove CCs

FU1
...FU2 FUn

...

FUn+1

add FUsremove FUs

Architectural Reconfiguration Strategies (2)

September 15, 2011 12

CC induction /
replacement strategy

increase FUR’s size decrease FUR’s size

randomly initialize new CCs
randomly

remove randomly
selected CCs

low penalty selection
scheme

duplicate CCs with
lowest penalty counter

remove CCs with lowest
penalty counter

high penalty selection
scheme

duplicate CCs with
highest penalty counter

remove CCs with highest
penalty counter

•  baseline method: induce randomly initialized, remove randomly
selected CCs
–  requires no extension of the FUR architecture

•  introduce a penalty counter for every CC

Architectural Reconfiguration Strategies (1)

•  penalizing false negative CCs?
–  CC should compute a “match” instead, it computes

a “miss”
–  forces all CCs of a CDM to compute a “match” for

a corresponding input vector
•  reduces classification rule diversity

!  penalize false positive CCs
–  for a false positive CC increase penalty counter by

the number of false positive CCs in the same CDM

•  V=(v,l)j – set of labeled / classified training data

September 15, 2011 13

�

�

�

...

max

in
pu
t

decision

CDM

CCs

Benchmarks

•  UCI machine learning repository
–  Pima Indian Diabetes data set

•  768 feature vectors, 8 values in a feature vector
•  500 samples from negative-tested subjects
•  268 samples from positive-tested subjects

–  Thyroid data set
•  7200 feature vectors, 22 values in a feature vector
•  6.666 samples from regular subjects
•  166 samples from subjects with sub-normal function
•  368 samples form subjects with hyper-normal function

•  benchmark selected because of the pronounced experiment results

September 15, 2011 14

Experiment configuration
•  1st experiment: investigate FUR architectures using grid search over the

number of FUs and CCs
–  employ 12-fold cross validation, 100.000 generations

•  2nd experiment: use best configuration found for reconfigurable FUR
–  4 FUs per CC, generations between changes in CCs: 50.000
–  number of CCs:

•  2.1: gradual changes
–  10!9!8!7!6!5!4!3!2!1
–  1!2!3!4!5!6!7!8!9!10

•  2.2: radical changes
–  10!4!2
–  2!5!10

•  algorithm: 1+4 ES
–  three genes are mutated in each CC per generation
–  complete architecture is evolved in a single run

September 15, 2011 15

The Pima Benchmark

September 15, 2011 16
* own experiments

!

•  comparison of test accuracies in %
FUR configuration: (40, 4)

•  general FUR performance for the
Pima benchmark

 0 10 20 30 40 50 60 70 80
Category Classifiers 2

 4
 6

 8
 10

 12
 14

 16
 18

 20

Functional Units

 0.74
 0.76
 0.78

 0.8
 0.82
 0.84
 0.86
 0.88

ac
cu

ra
cy

The Thyroid Benchmark

September 15, 2011 17

!
Algorithm Error Rate ± Standard Deviation

DT* 0.29 0.18

CART* 0.42 0.27

CART 0.64

PVM 0.67

Logical Rules 0.70

FUR 1.03
GP with OS 1.24

GP 1.44 – 0.89

BP + local adapt. rates 1.50

ANN 1.52

BP + genetic opt. 1.60

GP 1.60 – 0.73

Quickprop 1.70

RPROP 2.00

GP (Gathercole et al.) 2.29 – 1.36

SVM* 2.35 0.51

MLP* 2.38 0.62

ANN 2.38 – 1.81

PGPC 2.74

GP (Brameier et al.) 5.10 – 1.80

kNN* 5.96 0.44

Table 2: Thyroid benchmark: Error rates and standard deviation in %. We use
the data mining toolbox RapidMiner [15] to evaluate the algorithms marked by
“*”. Preliminary, we identify good performing algorithm parameters by a grid
search. Remaining results are taken from [16].

– The main result is that reconfigurations of the FUR architecture are quickly
compensated in the test accuracy. The limitation in the case of the Thyroid
benchmark is a minimum amount of FU rows to leverage robust behavior.

In summary, as long as the FUR configuration contains enough FU rows, FUR’s
test accuracy behavior is stable during reconfigurations. Additionally, more FU
rows leverage faster convergence.

4 Conclusion

In this work we propose to leverage the FUR classifier architecture for creating
evolvable hardware systems that can cope with fluctuating resources. We de-
scribe this reconfigurable FUR architecture and experimentally evaluate it on
two medical benchmarks. First, we analyze the overfitting behavior and show
that the FUR architecture performs similar or better than state-of-the-art clas-
sification algorithms. Then we demonstrate that FUR’s generalization perfor-
mance is robust to changes in the available resources as long as a certain amount
of FU rows is present in the system. Furthermore, FUR’s capability to recover
from a change in the available resources benefits from additional FU rows.

!

•  comparison of test accuracies in %
FUR configuration: (40, 4)

•  general FUR performance for the
Thyroid benchmark

* own experiments

 0 10 20 30 40 50 60 70 80
Category Classifiers 2

 4
 6

 8
 10

 12
 14

 16
 18

 20

Functional Units

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

ac
cu

ra
cy

 0.625

 0.65

 0.675

 0.7

 0.725

 0.75

 0.775

 0 100000 200000 300000 400000 500000

generations

 0.65

 0.675

 0.7

 0.725

 0.75

 0.775

 0.8

 0.825

 0.85

 0.875

 0 100000 200000 300000 400000 500000

generations

Increasing Resources: Pima Benchmark (1)

•  4 FUs per CC, number of CCs:
1!2!3!4!5!6!7!8!9!10

•  add randomly initialized CCs

•  test accuracy reaches high
regions for small FUR
configurations

September 15, 2011 18

tra
in

in
g

ac
cu

ra
cy

te

st
 a

cc
ur

ac
y

Decreasing Resources: Pima Benchmark (2)

September 15, 2011 19

 0.65

 0.675

 0.7

 0.725

 0.75

 0.775

 0.8

 0.825

 0.85

 0.875

 0 100000 200000 300000 400000 500000

tr
ai

ni
ng

 a
cc

ur
ac

y

generations

 0.625

 0.65

 0.675

 0.7

 0.725

 0.75

 0.775

 0 100000 200000 300000 400000 500000

te
st

 a
cc

ur
ac

y

generations

•  4 FUs per CC, number of CCs:
10!9!8!7!6!5!4!3!2!1

•  remove randomly selected
CCs

Fluctuating Resources: Gradual Changes

•  averaged accuracy drops in % over 96 algorithm runs

September 15, 2011 20

•  reconfiguration effects are rather small for the Pima benchmark
•  Thryoid benchmark: replicating “low penalty” CC is slightly worse than

inducing random CCs

Table 2: Thyroid benchmark: Error rates and standard deviation (SD) in %. We use the data mining toolbox RapidMiner [16]

to evaluate the algorithms marked by “*”. Preliminary, we identify good performing algorithm parameters by a grid search.

Remaining results are taken from [17].

Algorithm Error Rate ± SD

DT* 0.29 0.18

CART* 0.42 0.27

CART 0.64

PVM 0.67

Logical Rules 0.70

FUR 1.03
GP with OS 1.24

GP 1.44 – 0.89

BP + local adapt. rates 1.50

ANN 1.52

BP + genetic opt. 1.60

GP 1.60 – 0.73

Quickprop 1.70

RPROP 2.00

GP (Gathercole et al.) 2.29 – 1.36

SVM* 2.35 0.51

MLP* 2.38 0.62

ANN 2.38 – 1.81

PGPC 2.74

GP (Brameier et al.) 5.10 – 1.80

kNN* 5.96 0.44

Table 3: Averaged accuracy drops in % over 96 algorithm runs. 1+4 ES is executed for 50.000 generations between the reconfig-

urations. During a reconfiguration randomly selected, “best” or “worst” CCs are removed or duplicated. Bold numbers indicate

best-performing replacement strategy.

10 → 9 → · · · → 1 1 → 2 → · · · → 10
training test training test

Pima random 10.87 5.70 8.33 5.70

low penalty 13.57 7.90 7.18 5.15
high penalty 9.39 4.23 8.90 6.11

Thyroid random 23.94 23.77 15.91 15.74
low penalty 40.87 40.73 16.13 16.03

high penalty 12.21 12.00 20.60 20.53

– Analog to the previous experiment, removing “worst” CCs and duplicating “best” CCs reduces the accuracy drops for Pima

and Thyroid benchmarks. There is, however, one exception. Lowest test accuracy drops when switching from 2 to 5 CCs in

the Thyroid benchmark are achieved by duplicating the “worst” CC three times.

In summary, for all experiments in this section we can conclude that the FUR architecture is exceptionally fast in recovering from

architectural reconfigurations, given enough resources are provided for learning. Still, the proposed schemes of removing “worst”

and adding “best” CCs help to reduce the impact on the classification rate after reconfiguration of the architecture dimensions.

This is both in terms of lower magnitudes on the instantaneous accuracy drops, as well as a shortened recovery time before

pre-reconfiguration test accuracies are regained.

4 Conclusion

In this work we propose to leverage the FUR classifier architecture for creating evolvable hardware systems that can cope with

fluctuating resources. We describe FUR’s architecture and experimentally evaluate it on two medical benchmarks. In the first

experiment we analyze FUR’s overfitting behavior and demonstrate that FUR performs similar or better than conventional state-

of-the-art classification algorithms. Then we investigate FUR performance during architectural reconfigurations. This is done by

reducing or increasing the available resources and measuring the accuracy behavior during the transitions. To reduce the impact

of reconfiguration on the accuracy rate, we also introduce two reconfiguration schemes for adding and removing Functional Unit

Fluctuating Resources: Radical Changes

•  averaged accuracy drops in % over 32 algorithm runs

September 15, 2011 21

•  outlier: increasing size for small FUR configurations and the Thyroid
benchmark

Table 4: Averaged accuracy drops in % over 32 algorithm runs. 1+4 ES is executed for 50.000 generations between the reconfig-
urations. During a reconfiguration randomly selected, “best” or “worst” CCs are removed or duplicated. Bold numbers indicate
best-performing replacement strategy.

10 → 4 4 → 2 2 → 5 5 → 10
training test training test training test training test

Pima random 21.90 13.76 17.75 9.91 13.46 11.86 18.27 15.42
low penalty 21.59 10.93 19.94 11.52 8.98 6.34 16.52 9.32
high penalty 16.65 10.30 10.57 5.61 14.66 11.91 21.71 16.35

Thyroid random 60.00 59.37 45.96 45.55 30.29 30.27 44.13 44.00
low penalty 54.50 54.28 54.75 54.72 30.14 29.88 34.90 34.93
high penalty 34.27 33.91 35.71 35.89 18.65 18.30 71.84 72.16

References

1. de Garis, H.: Evolvable Hardware: Genetic Programming of a Darwin Machine. In: Intl. Conf. on Artificial Neural Nets and Genetic
Algorithms. Springer (1993) 441–449

2. Higuchi, T., Niwa, T., Tanaka, T., Iba, H., de Garis, H., Furuya, T.: Evolving Hardware with Genetic Learning: a First Step Towards
Building a Darwin Machine. In: From Animals to Animats, MIT Press (1993) 417–424

3. Tanaka, M., Sakanashi, H., Salami, M., Iwata, M., Kurita, T., Higuchi, T.: Data compression for digital color electrophotographic printer
with evolvable hardware. In Sipper, M., et al., eds.: Intl. Conf. on Evolvable Systems (ICES). Volume 1478 of LNCS. Springer (1998)
106–114

4. Koza, J., Keane, M., Streeter, M.: Routine high-return human-competitive evolvable hardware. NASA/DoD Conference on Evolvable
Hardware (2004) 3–17

5. Sekanina, L.: Evolutionary Design Space Exploration for Median Circuits. In: Applications of Evolutionary Computing. Volume 3005 of
LNCS., Springer (2004) 240–249

6. Lohn, J., Hornby, G., Linden, D.: Evolutionary antenna design for a NASA spacecraft. In O’Reilly, U.M., Yu, T., Riolo, R.L., Worzel, B.,
eds.: Genetic Programming Theory and Practice II. Springer (2004) 301–315

7. Kaufmann, P., Plessl, C., Platzner, M.: EvoCaches: Application-specific Adaptation of Cache Mappings. In: Adaptive Hardware and
Systems (AHS), IEEE CS (2009) 11–18

8. Glette, K., Torresen, J., Yasunaga, M.: An Online EHW Pattern Recognition System Applied to Face Image Recognition. In: Applications
of Evolutionary Computing (EvoWorkshops). Volume 4448 of LNCS. Springer (2007) 271–280

9. Sekanina, L., Ruzicka, R.: Design of the Special Fast Reconfigurable Chip Using Common FPGA. In: Design and Diagnostics of Electronic
Circuits and Systems (DDECS). (2000) 161–168

10. Torresen, J., Senland, G., Glette, K.: Partial Reconfiguration Applied in an On-line Evolvable Pattern Recognition System. In: NORCHIP
2008, IEEE (2008) 61–64

11. Glette, K., Torresen, J., Yasunaga, M.: Online Evolution for a High-Speed Image Recognition System Implemented On a Virtex-II Pro
FPGA. In: Adaptive Hardware and Systems (AHS), IEEE (2007) 463–470

12. Glette, K., Gruber, T., Kaufmann, P., Torresen, J., Sick, B., Platzner, M.: Comparing Evolvable Hardware to Conventional Classifiers for
Electromyographic Prosthetic Hand Control. In: Adaptive Hardware and Systems (AHS), IEEE (2008) 32–39

13. Yasunaga, M., Nakamura, T., Yoshihara, I.: Evolvable Sonar Spectrum Discrimination Chip Designed by Genetic Algorithm. In: Systems,
Man and Cybernetics. Volume 5., IEEE (1999) 585–590

14. Asuncion, A., Newman, D.: UCI Machine Learning Repository. University of California, Irvine, School of Information and Computer
Sciences (2007)

15. Glette, K., Torresen, J., Yasunaga, M., Yamaguchi, Y.: On-Chip Evolution Using a Soft Processor Core Applied to Image Recognition. In:
Adaptive Hardware and Systems (AHS), IEEE (2006) 373–380

16. Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: YALE: Rapid Prototyping for Complex Data Mining Tasks. In: Intl. Conf.
on Knowledge Discovery and Data Mining (KDD). (2006) 935 – 940

17. Winkler, S.M., Affenzeller, M., Wagner, S.: Using Enhanced Genetic Programming Techniques for Evolving Classifiers in the Context of
Medical Diagnosis. In: Genetic Programming and Evolvable Machines. Volume 10(2)., Kluwer Academic Publishers (2009) 111–140

Results
•  FUR architecture provides good accuracies for many benchmarks, even

when using few CCs
•  confirmed additionally by sonar and road sign benchmarks

•  reconfigurable FUR architecture is well-suited for dealing with fluctuations in
available resources
–  classification accuracy is sensitive to changes in the number of CCs, but recovers

quickly
–  recovery process is faster, when using more resources
–  reconfiguration schemes can reduce accuracy drops significantly

•  replicate “low penalty” CCs
•  remove “high penalty” CCs
•  reconfiguration scheme important for larger (relative) resource changes

September 15, 2011 22

September 15, 2011 23

Outline
•  motivation/vision

•  ! to last status meeting

•  EHW classifier adaptation to fluctuating resources

•  publications, collaborations

September 15, 2011 24

Publications
Book chapters:

•  P. Kaufmann, and M. Platzner. Cone- and Age-based Module acquisition for Cartesian Genetic Programming. In J. Miller, editor, Cartesian Genetic
Programming, Springer, 2011.

•  P. Kaufmann, and M. Platzner. Embedded Cartesian Programming for Evolvable Hardware Classifiers. In J. Miller, editor, Cartesian Genetic
Programming, Springer, 2011.

•  P. Kaufmann, C. Plessl and M. Platzner. Evolvable Caches. In J. Miller, editor, Cartesian Genetic Programming, Springer, 2011.

•  P. Kaufmann, and M. Platzner. Multi-objective Intrinsic Evolution of Embedded Systems. In C. Müller- Schloer, H. Schmeck, and T. Ungerer, editors,
Organic Computing — A Paradigm Shift for Complex Systems, Springer, 2011

Journals:
•  P. Kaufmann, K. Glette, M. Platzner, J. Torresen. Compensating Resource Fluctuations by Means of Evolvable Hardware: The Run-Time

Reconfigurable Functional Unit Row Classifier Architecture, In International Journal of Adaptive, Resilient, and Autonomic Systems (IJARAS), 2011 (to
appear).

•  P. Kaufmann, K. Glette, T. Gruber, M. Platzner, J. Torresen, B. Sick. Classification of Electromyographic Signals: Comparing Evolvable Hardware to
Conventional Classifiers. In IEEE Transactions on Evolutionary Computation, 2011 (submitted).

Papers:

•  A. Boschmann, P. Kaufmann, and M. Platzner. Accurate Gait Phase Detection using Surface Electromyographic Signals and Support Vector Machines,
IEEE Intl. Conf. Bioinformatics and Biomedical Technology (ICBBT’11)

•  P. Kaufmann, K. Englehart, and M. Platzner. Fluctuating EMG Signals: Investigating Long-term Effects of Pattern Matching Algorithms,
32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC'10).

•  T. Knieper, P. Kaufmann, K. Glette, M. Platzner, J. Torresen. Coping with Resource Fluctuations: The Run-time Reconfigurable Functional Unit Row
Classifier Architecture, 9th International Conference on Evolvable Systems (ICES'10), Awarded best student paper

•  P. Kaufmann, T. Knieper and M. Platzner. A Novel Hybrid Evolutionary Strategy and its Periodization with Multi-objective Genetic Optimizers, IEEE
Congress on Evolutionary Computation (CEC'10).

•  P. Kaufmann, C. Plessl and M. Platzner. EvoCaches: Application-specific Adaptation of Cache Mappings, NASA/ESA Conference on Adaptive Hardware
and Systems (AHS'09).

September 15, 2011 25

Publications
•  A. Boschmann, P. Kaufmann, M. Platzner, and M. Winkler. Towards Multi-movement Hand Prostheses: Combining Adaptive Classification with High

Precision Sockets, Technically Assisted Rehabilitation (TAR’09).

•  K. Glette, J. Torresen, P. Kaufmann, and M. Platzner. A Comparison of Evolvable Hardware Architectures for Classification Tasks, 8th International
Conference on Evolvable Systems (ICES'08).

•  T. Schumacher, R. Meiche, P. Kaufmann, E. Lübbers, C. Plessl, and M. Platzner. A Hardware Accelerator for k-th Nearest Neighbor Thinning,
Engineering of Reconfigurable Systems and Algorithms (ERSA'08).

•  T. Knieper, B. Defo, P. Kaufmann, and M. Platzner. On Robust Evolution of Digital Hardware, Biologically Inspired Collaborative Computing (BICC'08).

•  P. Kaufmann and M. Platzner. Advanced Techniques for the Creation and Propagation of Modules in Cartesian Genetic Programming, Genetic and
Evolutionary Computation Conference (GECCO'08).

•  K. Glette, T. Gruber, P. Kaufmann, J. Torresen, B. Sick, and M. Platzner. Comparing Evolvable Hardware to Conventional Classifiers for
Electromyographic Prosthetic Hand Control, NASA/ESA Conference on Adaptive Hardware and Systems (AHS'08), Awarded best paper

•  P. Kaufmann and M. Platzner. MOVES: A Modular Framework for Hardware Evolution, NASA/ESA Conference on Adaptive Hardware and Systems
(AHS'07), Awarded best paper

•  P. Kaufmann and M. Platzner. Toward Self-adaptive Embedded Systems: Multi-objective Hardware Evolution, Architecture of Computing Systems
(ARCS'07).

•  P. Kaufmann and M. Platzner. Multi-objective Intrinsic Hardware Evolution, MAPLD'06 International Conference.

September 15, 2011 26

Collaborations
•  reconfigurable architectures

–  Jim Torresen & Kyrre Glette, University of Oslo

•  pattern matching algorithms
–  Bernhard Sick & Thiemo Gruber, University of Kassel

•  EMG signal analysis
–  Kevin Englehart, University of New Brunswick

September 15, 2011 27

Thank you for your attention!

