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Motivation / Vision 

•  investigate simulated evolution as a mechanism to achieve self- 
adaptation and –optimization for autonomous embedded systems 

•  an embedded system should be capable of adapting to ! 
–  the environment 
–  changes in resources 

•  adaptability achieved by combining intrinsic evolution with reconfigurable 
hardware (evolvable hardware, EHW) 

 
•  working areas 

1.  models and algorithms 
2.  system architectures 
3.  case studies, evaluation 
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! to Last Status Meeting 
•  last status meeting 

–  evolutionary algorithms 
•  periodization of local and global search  [Kaufmann et al., CEC '10] 

–  evolvable hardware architecture 
•  EHW classifier adaptation     [Knieper et al., ICES '10] 

–  application examples 
•  prosthetic hand controllers     [Kaufmann et al., EMBC ’10] 

•  new work done 
–  evolvable hardware architecture 

•  reconfiguration schemes for     [Kaufmann et al., IJARAS ’11, to app.] 
EHW classifiers   

–  application examples 
•  lower-limb gait detection     [Boschmann et al., ICBBT ’11] 

–  algorithms & applications      [Miller (ed.), Cartesian Genetic 
           Programming, Springer] 



chosen. One data element is thus selected from the input bits,
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Functional Unit Row (FUR) Architecture 
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–  by Glette & Torresen [Glette’06] 
–  Virtual Reconfigurable Circuit, i.e. 

reconfiguration through  
registers / mux controls 



Functional Unit Row Architecture (1) 

•  FUR architecture comprises a Category Detection Module (CDM) for each 
category to be classified 

•  CDM contains a number of basic pattern matching elements (CC) 
•  category with most activated pattern matching elements defines classifier’s 

decision 
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Functional Unit Row Architecture (2) 

•  Category Classifier (CC) decides, if the given input vector corresponds to its 
category 

•  Functional Unit (FU) implements a decision rule 
•  CC is a conjunction of a number of decision rules 
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Functional Unit Row Architecture (3) 

•  Functional Unit (FU) compares a selected input value to a constant   
–  similar to Decision Trees 

•  FU configuration is subject to evolutionary optimization 
–  selection of the input value, reference constant, function selection 
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FUR’s Fitness Definition 

•  n – number of categories and Category 
Detection Modules (CDM) 

•  V=(v,l) – labeled / classified input vectors 
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EHW Classifier Adaptation 

•  previous work:  
–  FUR architecture applied to classification of electromyographic signals 

•  [Glette, Kaufmann, Torresen, Platzner: ICES’08] 
•  [Glette, Gruber, Kaufmann, Torresen, Sick, Platzner: AHS’08] 

–  investigation of run-time reconfigurable FUR architectures 
•  [Knieper, Kaufmann, Glette, Platzner, Torresen: ICES’10] 
•  [Kaufmann, Glette, Platzner, Torresen: IJARAS’11] 

−  new work: improve classification behaviour during architectural 
reconfigurations 
−  questions: 

•  how large are the accuracy drops during architectural reconfigurations? 
•  what kind of strategies can be used to reduce the impact of architectural 

reconfigurations? 
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Reconfigurable FUR Architecture 

•  reconfigurable FUR architecture shows two degrees of freedom 
–  number of FUs in a CC 

•  depends largely on the application 
–  number of CCs in a CDM 
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Architectural Reconfiguration Strategies (2) 
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CC induction / 
replacement strategy 

increase FUR’s size decrease FUR’s size 

randomly initialize new CCs 
randomly 

remove randomly 
selected CCs 

low penalty selection 
scheme 

duplicate CCs with 
lowest penalty counter 

remove CCs with lowest 
penalty counter 

high penalty selection 
scheme 

duplicate CCs with 
highest penalty counter 

remove CCs with highest 
penalty counter 

•  baseline method: induce randomly initialized, remove randomly 
selected CCs 
–  requires no extension of the FUR architecture 

•  introduce a penalty counter for every CC 



Architectural Reconfiguration Strategies (1) 

•  penalizing false negative CCs? 
–  CC should compute a “match” instead, it computes 

a “miss” 
–  forces all CCs of a CDM to compute a “match” for 

a corresponding input vector 
•  reduces classification rule diversity 

!  penalize false positive CCs 
–  for a false positive CC increase penalty counter by 

the number of false positive CCs in the same CDM 

•  V=(v,l)j – set of labeled / classified training data 
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Benchmarks 

•  UCI machine learning repository 
–  Pima Indian Diabetes data set 

•  768 feature vectors, 8 values in a feature vector 
•  500 samples from negative-tested subjects 
•  268 samples from positive-tested subjects 

–  Thyroid data set 
•  7200 feature vectors, 22 values in a feature vector 
•  6.666 samples from regular subjects 
•  166 samples from subjects with sub-normal function 
•  368 samples form subjects with hyper-normal function 

•  benchmark selected because of the pronounced experiment results 
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Experiment configuration 
•  1st experiment: investigate FUR architectures using grid search over the 

number of FUs and CCs 
–  employ 12-fold cross validation, 100.000 generations 

•  2nd experiment: use best configuration found for reconfigurable FUR 
–  4 FUs per CC, generations between changes in CCs: 50.000 
–  number of CCs:  

•  2.1: gradual changes 
–  10!9!8!7!6!5!4!3!2!1 
–  1!2!3!4!5!6!7!8!9!10 

•  2.2: radical changes 
–  10!4!2 
–  2!5!10 

•  algorithm: 1+4 ES 
–  three genes are mutated in each CC per generation 
–  complete architecture is evolved in a single run 
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The Pima Benchmark 
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* own experiments 

! 

•  comparison of test accuracies in % 
FUR configuration: (40, 4) 

•  general FUR performance for the 
Pima benchmark 
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The Thyroid Benchmark 
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! 
Algorithm Error Rate ± Standard Deviation

DT* 0.29 0.18

CART* 0.42 0.27

CART 0.64

PVM 0.67

Logical Rules 0.70

FUR 1.03
GP with OS 1.24

GP 1.44 – 0.89

BP + local adapt. rates 1.50

ANN 1.52

BP + genetic opt. 1.60

GP 1.60 – 0.73

Quickprop 1.70

RPROP 2.00

GP (Gathercole et al.) 2.29 – 1.36

SVM* 2.35 0.51

MLP* 2.38 0.62

ANN 2.38 – 1.81

PGPC 2.74

GP (Brameier et al.) 5.10 – 1.80

kNN* 5.96 0.44

Table 2: Thyroid benchmark: Error rates and standard deviation in %. We use
the data mining toolbox RapidMiner [15] to evaluate the algorithms marked by
“*”. Preliminary, we identify good performing algorithm parameters by a grid
search. Remaining results are taken from [16].

– The main result is that reconfigurations of the FUR architecture are quickly
compensated in the test accuracy. The limitation in the case of the Thyroid
benchmark is a minimum amount of FU rows to leverage robust behavior.

In summary, as long as the FUR configuration contains enough FU rows, FUR’s
test accuracy behavior is stable during reconfigurations. Additionally, more FU
rows leverage faster convergence.

4 Conclusion

In this work we propose to leverage the FUR classifier architecture for creating
evolvable hardware systems that can cope with fluctuating resources. We de-
scribe this reconfigurable FUR architecture and experimentally evaluate it on
two medical benchmarks. First, we analyze the overfitting behavior and show
that the FUR architecture performs similar or better than state-of-the-art clas-
sification algorithms. Then we demonstrate that FUR’s generalization perfor-
mance is robust to changes in the available resources as long as a certain amount
of FU rows is present in the system. Furthermore, FUR’s capability to recover
from a change in the available resources benefits from additional FU rows.

! 

•  comparison of test accuracies in % 
FUR configuration: (40, 4) 

•  general FUR performance for the 
Thyroid benchmark 

* own experiments 
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Increasing Resources: Pima Benchmark (1) 

•  4 FUs per CC, number of CCs: 
1!2!3!4!5!6!7!8!9!10 

•  add randomly initialized CCs 

•  test accuracy reaches high 
regions for small FUR 
configurations 
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Decreasing Resources: Pima Benchmark (2) 
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•  4 FUs per CC, number of CCs: 
10!9!8!7!6!5!4!3!2!1 

•  remove randomly selected 
CCs 



Fluctuating Resources: Gradual Changes 

•  averaged accuracy drops in % over 96 algorithm runs 
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•  reconfiguration effects are rather small for the Pima benchmark 
•  Thryoid benchmark: replicating “low penalty” CC is slightly worse than 

inducing random CCs 

Table 2: Thyroid benchmark: Error rates and standard deviation (SD) in %. We use the data mining toolbox RapidMiner [16]

to evaluate the algorithms marked by “*”. Preliminary, we identify good performing algorithm parameters by a grid search.

Remaining results are taken from [17].

Algorithm Error Rate ± SD

DT* 0.29 0.18

CART* 0.42 0.27

CART 0.64

PVM 0.67

Logical Rules 0.70

FUR 1.03
GP with OS 1.24

GP 1.44 – 0.89

BP + local adapt. rates 1.50

ANN 1.52

BP + genetic opt. 1.60

GP 1.60 – 0.73

Quickprop 1.70

RPROP 2.00

GP (Gathercole et al.) 2.29 – 1.36

SVM* 2.35 0.51

MLP* 2.38 0.62

ANN 2.38 – 1.81

PGPC 2.74

GP (Brameier et al.) 5.10 – 1.80

kNN* 5.96 0.44

Table 3: Averaged accuracy drops in % over 96 algorithm runs. 1+4 ES is executed for 50.000 generations between the reconfig-

urations. During a reconfiguration randomly selected, “best” or “worst” CCs are removed or duplicated. Bold numbers indicate

best-performing replacement strategy.

10 → 9 → · · · → 1 1 → 2 → · · · → 10
training test training test

Pima random 10.87 5.70 8.33 5.70

low penalty 13.57 7.90 7.18 5.15
high penalty 9.39 4.23 8.90 6.11

Thyroid random 23.94 23.77 15.91 15.74
low penalty 40.87 40.73 16.13 16.03

high penalty 12.21 12.00 20.60 20.53

– Analog to the previous experiment, removing “worst” CCs and duplicating “best” CCs reduces the accuracy drops for Pima

and Thyroid benchmarks. There is, however, one exception. Lowest test accuracy drops when switching from 2 to 5 CCs in

the Thyroid benchmark are achieved by duplicating the “worst” CC three times.

In summary, for all experiments in this section we can conclude that the FUR architecture is exceptionally fast in recovering from

architectural reconfigurations, given enough resources are provided for learning. Still, the proposed schemes of removing “worst”

and adding “best” CCs help to reduce the impact on the classification rate after reconfiguration of the architecture dimensions.

This is both in terms of lower magnitudes on the instantaneous accuracy drops, as well as a shortened recovery time before

pre-reconfiguration test accuracies are regained.

4 Conclusion

In this work we propose to leverage the FUR classifier architecture for creating evolvable hardware systems that can cope with

fluctuating resources. We describe FUR’s architecture and experimentally evaluate it on two medical benchmarks. In the first

experiment we analyze FUR’s overfitting behavior and demonstrate that FUR performs similar or better than conventional state-

of-the-art classification algorithms. Then we investigate FUR performance during architectural reconfigurations. This is done by

reducing or increasing the available resources and measuring the accuracy behavior during the transitions. To reduce the impact

of reconfiguration on the accuracy rate, we also introduce two reconfiguration schemes for adding and removing Functional Unit



Fluctuating Resources: Radical Changes 

•  averaged accuracy drops in % over 32 algorithm runs 
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•  outlier: increasing size for small FUR configurations and the Thyroid 
benchmark 

Table 4: Averaged accuracy drops in % over 32 algorithm runs. 1+4 ES is executed for 50.000 generations between the reconfig-
urations. During a reconfiguration randomly selected, “best” or “worst” CCs are removed or duplicated. Bold numbers indicate
best-performing replacement strategy.

10 → 4 4 → 2 2 → 5 5 → 10
training test training test training test training test

Pima random 21.90 13.76 17.75 9.91 13.46 11.86 18.27 15.42
low penalty 21.59 10.93 19.94 11.52 8.98 6.34 16.52 9.32
high penalty 16.65 10.30 10.57 5.61 14.66 11.91 21.71 16.35

Thyroid random 60.00 59.37 45.96 45.55 30.29 30.27 44.13 44.00
low penalty 54.50 54.28 54.75 54.72 30.14 29.88 34.90 34.93
high penalty 34.27 33.91 35.71 35.89 18.65 18.30 71.84 72.16

References

1. de Garis, H.: Evolvable Hardware: Genetic Programming of a Darwin Machine. In: Intl. Conf. on Artificial Neural Nets and Genetic
Algorithms. Springer (1993) 441–449

2. Higuchi, T., Niwa, T., Tanaka, T., Iba, H., de Garis, H., Furuya, T.: Evolving Hardware with Genetic Learning: a First Step Towards
Building a Darwin Machine. In: From Animals to Animats, MIT Press (1993) 417–424

3. Tanaka, M., Sakanashi, H., Salami, M., Iwata, M., Kurita, T., Higuchi, T.: Data compression for digital color electrophotographic printer
with evolvable hardware. In Sipper, M., et al., eds.: Intl. Conf. on Evolvable Systems (ICES). Volume 1478 of LNCS. Springer (1998)
106–114

4. Koza, J., Keane, M., Streeter, M.: Routine high-return human-competitive evolvable hardware. NASA/DoD Conference on Evolvable
Hardware (2004) 3–17

5. Sekanina, L.: Evolutionary Design Space Exploration for Median Circuits. In: Applications of Evolutionary Computing. Volume 3005 of
LNCS., Springer (2004) 240–249

6. Lohn, J., Hornby, G., Linden, D.: Evolutionary antenna design for a NASA spacecraft. In O’Reilly, U.M., Yu, T., Riolo, R.L., Worzel, B.,
eds.: Genetic Programming Theory and Practice II. Springer (2004) 301–315

7. Kaufmann, P., Plessl, C., Platzner, M.: EvoCaches: Application-specific Adaptation of Cache Mappings. In: Adaptive Hardware and
Systems (AHS), IEEE CS (2009) 11–18

8. Glette, K., Torresen, J., Yasunaga, M.: An Online EHW Pattern Recognition System Applied to Face Image Recognition. In: Applications
of Evolutionary Computing (EvoWorkshops). Volume 4448 of LNCS. Springer (2007) 271–280

9. Sekanina, L., Ruzicka, R.: Design of the Special Fast Reconfigurable Chip Using Common FPGA. In: Design and Diagnostics of Electronic
Circuits and Systems (DDECS). (2000) 161–168

10. Torresen, J., Senland, G., Glette, K.: Partial Reconfiguration Applied in an On-line Evolvable Pattern Recognition System. In: NORCHIP
2008, IEEE (2008) 61–64

11. Glette, K., Torresen, J., Yasunaga, M.: Online Evolution for a High-Speed Image Recognition System Implemented On a Virtex-II Pro
FPGA. In: Adaptive Hardware and Systems (AHS), IEEE (2007) 463–470

12. Glette, K., Gruber, T., Kaufmann, P., Torresen, J., Sick, B., Platzner, M.: Comparing Evolvable Hardware to Conventional Classifiers for
Electromyographic Prosthetic Hand Control. In: Adaptive Hardware and Systems (AHS), IEEE (2008) 32–39

13. Yasunaga, M., Nakamura, T., Yoshihara, I.: Evolvable Sonar Spectrum Discrimination Chip Designed by Genetic Algorithm. In: Systems,
Man and Cybernetics. Volume 5., IEEE (1999) 585–590

14. Asuncion, A., Newman, D.: UCI Machine Learning Repository. University of California, Irvine, School of Information and Computer
Sciences (2007)

15. Glette, K., Torresen, J., Yasunaga, M., Yamaguchi, Y.: On-Chip Evolution Using a Soft Processor Core Applied to Image Recognition. In:
Adaptive Hardware and Systems (AHS), IEEE (2006) 373–380

16. Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: YALE: Rapid Prototyping for Complex Data Mining Tasks. In: Intl. Conf.
on Knowledge Discovery and Data Mining (KDD). (2006) 935 – 940

17. Winkler, S.M., Affenzeller, M., Wagner, S.: Using Enhanced Genetic Programming Techniques for Evolving Classifiers in the Context of
Medical Diagnosis. In: Genetic Programming and Evolvable Machines. Volume 10(2)., Kluwer Academic Publishers (2009) 111–140



Results 
•  FUR architecture provides good accuracies for many benchmarks, even 

when using few CCs 
•  confirmed additionally by sonar and road sign benchmarks 

•  reconfigurable FUR architecture is well-suited for dealing with fluctuations in 
available resources 
–  classification accuracy is sensitive to changes in the number of CCs, but recovers 

quickly 
–  recovery process is faster, when using more resources 
–  reconfiguration schemes can reduce accuracy drops significantly 

•  replicate “low penalty” CCs 
•  remove “high penalty” CCs 
•  reconfiguration scheme important for larger (relative) resource changes 

September 15, 2011 22 



September 15, 2011 23 

Outline 
•  motivation/vision 

•  ! to last status meeting 

•  EHW classifier adaptation to fluctuating resources 
 

•  publications, collaborations 
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Thank you for your attention! 


