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Project overview 
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• Phase I 

– Goal: Establishing controlled self-organisation in 
technical systems 

– Specification of the generic centralised O/C 
architecture 

 

• Phase II 

– Systematic investigation of different distribution 
possibilities of the O/C architecture 

– Parallel and hierarchical on-line learning with 
eXtended Classifier Systems (XCSs) 

 

• Phase III 

– Investigation of extended learning mechanisms and 
experimental evaluation 

– Extension of OCCS methodology to other OC 
applications  
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Motivation 

• Establishing controlled self-adaptation to create robust and flexible OC 
systems using the generic O/C architecture 

 

 

 

 

 

 

 

• A highly effective system architecture using 

two layers with offline and online learning (OTC) 

• Objectives:  

Layer 2: Investigation of different optimisation algorithms other than GA  

Layer 1: Investigation of different learning architectures for XCS to speed up the    
       online learning process.  
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Layer 2 – The optimisation layer 

• Offline learning with the population based  

 optimisation algorithm GA 

 

• Question: Is GA the best possible choice? 

• There exist many (population-based or trajectory-based) optimisation 
algorithms that can be used on layer 2: 

– Differential evolution (DE), Particle Swarm Optimisation (PSO), Simulated 
Annealing (SA) … 

 

• Contribution: A new population-based optimisation algorithm (Role-Based 
Imitation algorithm - RBI) that can be used on layer 2 to: 

1. improve the solution quality and  

2. reduce the time to find the optimal solutions. 
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Layer 2 – RBI 
• RBI is a population-based optimisation algorithm. 

– RBI provides a clear distinction of exploring and exploiting individuals according to 
1. the current degree of convergence of a (sub-)population 
2. the relative quality of the agent's solution 
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Cakar, E., Tomforde S. and Müller-Schloer, C. 2011.  

A Role-based Imitation Algorithm for the Optimisation in 

Dynamic Fitness Landscapes. In IEEE Swarm Intelligence 

Symposium (SIS 2011), pages 139 -146, Paris, France, 2011 
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Layer 2 – RBI 

• Comparison of RBI to Differential Evolution (DE), Particle Swarm Optimisation 
(PSO), Genetic Algorithm (GA) and Simulated Annealing (SA)  

1. in static fitness landscapes using different benchmark functions from the 
literature. 

2. in a dynamic fitness landscape using a scenario from the predator-prey 
domain. 

 

• A static fitness landscape doesn’t change over time while a dynamic 
fitness landscape may change, e.g. as a function of agent behaviour which 
is typical for OC scenarios. 
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Comparison in static fitness 
landscapes 

• Comparison of RBI with other algorithms using 21 benchmark functions 

– The benchmark functions are taken from “A comparative Study of 
Differential Evolution, Particle Swarm Optimisation and Evolutionary 
Algorithms on Numerical Benchmark Problems”, Vesterstrom et al., CEC 2004 

• F1 - F13 are high-dimensional functions each with 30 dimensions 

• F14 – F21 are low-dimensional functions with 2 or 4 dimensions. 

• Max number of function evaluations is set to 500,000 

• Some of the benchmark functions: 
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F9 - Rastrigin function F14 - Shekel function 
F2- Schwefel function 



DFG 1183 ORGANIC COMPUTING 

Comparison in static fitness 
landscapes 
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high-dimensional 
functions 
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functions 

Multimodal and  

high-dimensional  
functions 

• RBI is better than GA, PSO and SA and on the same level as DE.  
      (Best solutions are shown in grey) 
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Comparison in dynamic fitness 
landscapes 

• A scenario from the pursuit (predator-prey) domain 

• The predators (robots) try to follow and observe the prey (target). 
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• Grid-based environment 

• The target evades the robots and is twice as 
fast as a robot. 

 • Each robot counts its number of 
observations (variable NofOBS) that is 
incremented each time the target is in the 
1-step neighbourhood of the robot. 

• Goal of a robot: Maximise the value of its NofOBS 

• System performance: The sum of all NofOBS 

• Minimum 1 cell distance between two robots: The target cannot be captured. 
September 15, 2011 
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Comparison in dynamic fitness 
landscapes 
• Different scenarios with an increasing level of complexity are investigated. 

• Total number of observations is measured after 50,000 iterations. 

• Each robot optimises its behaviour every 100 iterations. The number of function 
evaluations for a single robot is limited to 500 (50,000 / 100). 
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Layer 1 – The adaptation layer 

• Offline learning with an eXtended Classifier  

 System (XCS) 

 

• Questions: How can we improve the learning speed of the XCS, what kind 
of modifications are to be made? 

 

• Contributions:  

1. Investigation and evaluation of centralised and distributed rule bases for an 
XCS 

2. Development of a rule combining mechanism (XCS-RC) to create maximally 
general classifiers that match as many inputs as possible while still being 
exact in their predictions 

 

11 11 

Layer 1 
Online learning 

 
Observer Observer 

Controller Controller 

XCS XCS 

September 15, 2011 



DFG 1183 ORGANIC COMPUTING 

• XCS – RC replaces the discovery component of the XCS (covering and genetic 
operators) with rule combining. 

• A pair of classifiers is combined using the inductive reasoning. 

 

 

 

 

 

• Principles: both classifiers have the same action, similar prediction level and 
the combining result has no disproving rule 

• Disproving rule: a classifier that is able to cover the same condition as the 
result of combining but having significantly different predictions 

• In order to prevent such a conflict, an examination is included in the process 
 
 Fredivianus N., Prothmann, H., Schmeck, H. 2010. XCS Revisited: A Novel Discovery Component for the eXtended Classifier 

System.  In Proceedings of 8th International Conference on Simulated Evolution And Learning (SEAL-2010) 

XCS – Rule Combining (XCS-RC) 
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Classifiers before combining Classifiers before combining 

Index 
Condition 

(cl.C) 

Action 

(cl.A) 

Prediction 

(cl.P) 

1 11010 0 100 

2 10110 0 98 

3 111## 0 10 

Index cl.C cl.A cl.P 

1 1##10 0 99 

Result after combining Result after combining 

Conflict on „11110“ Conflict on „11110“ 

2 111## 0 10 
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Testbench 1 
Single-step learning: The multiplexers (average of 20 runs) 

XCS – RC XCS – RC Optimum Optimum XCS XCS 

XCS-RC performs 

quicker in achieving 

100% of correctness 

rate, compared to XCS 

XCS-RC performs 

quicker in achieving 

100% of correctness 

rate, compared to XCS 

XCS-RC minimized the 

population size more 

quickly than XCS 

XCS-RC minimized the 

population size more 

quickly than XCS 
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Testbench 2 
Multi-step learning: The Woods and Maze environments (average of 20 
runs) 

XCS – RC XCS – RC Reference Reference XCS XCS 
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Exploration trials 

XCS-RC performs well in 

minimizing steps to food taken by 

the animat. 

XCS-RC performs well in 

minimizing steps to food taken by 

the animat. 

Numbers of classifiers in [P] are 

minimized correctly and 

significantly by XCS-RC. 

Numbers of classifiers in [P] are 

minimized correctly and 

significantly by XCS-RC. 
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• The principles and mechanism of rule combining are also useful in handling 
real-valued input, e.g., in the multiplexer task. 

• The performance of XCS-RC is comparable to the previous investigations 
(e.g., Wilson‘s XCS) with a high advantage of resource usage. 

 

 

 

 

 

 

 

 

 

• The OTC project implements XCS with real-valued input on its 1st layer. 
Investigated as a diploma thesis topic by Kais El-Kara under the supervision of Nugroho Fredivianus 
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XCS-RC and real-valued input 
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XCS-RC reaches comparable 

performance compared to Wilson‘s in 

performing a multiplexer task handling 

six elements of real-valued input. 

XCS-RC reaches comparable 

performance compared to Wilson‘s in 

performing a multiplexer task handling 

six elements of real-valued input. 
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Explore trials 

After 77,000 trials, the 

number of rules for XCS-

RC is less than 30. 

After 77,000 trials, the 

number of rules for XCS-

RC is less than 30. 
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Summary 

• Summary 

1. Optimisation layer (Layer 2) 

• Development of a new population-based  

 heuristic (Role Based Imitation algorithm - RBI) 

• Better results with RBI in comparison to DE, PSO, GA and SA in static and 
dynamic fitness landscapes 

2. Adaptation layer (Layer 1) 

• Investigation and evaluation of centralised and  

 distributed rule bases for XCS 

• Higher learning performance with the rule combining mechanism (XCS-RC) 
in comparison to the standard XCS in single-step and multi-step problems 

3. Application of developed techniques regarding to other OC applications 
• Organic Network Control (ONC) system 
 Dynamic Control of Mobile ad-hoc Networks – Network protocol parameter adaptation using 

Organic Network Control, Tomforde et al., ICINCO 2010 

• Improved results with the OCCS methodology. 
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