

Organic Computing Middleware for Ubiquitous Environments OCµ

Julia Schmitt, Michael Roth, Rolf Kiefhaber, Florian Kluge, Theo Ungerer

Systems and Networking University of Augsburg Germany

12th OC Colloquium 2011-09-16

Outline

- Motivation
- 2 OCμ Phase 1 & 2 Architecture and Self-x Services
- 3 OCµ Phase 3 Organic Manager and Automated Planner
 - Monitor
 - Analyze
 - Plan
 - Execute
- 4 Conclusions

Motivation

- Increasing complexity of distributed systems
 - ► Ubiquitous embedded systems
 - ► Cloud Computing
- ► Self-managing middleware required
 - ► OC techniques
- ► Our approach: Middleware with Organic Manager
 - ► Self-x features
 - ► 2-level approach

OCµ Phase 1 & 2

- ► Organic Computing Middleware for Ubiquitous Environments OCµ
- Service-oriented architecture and tool implemented in Java
- Ubiquitous Computing Middleware enhanced by an Organic Manager
- Self-x algorithms developed as separate services
 - ► Self-optimization (human hormone system)
 - ► Self-configuration (cooperating social groups)
 - ► Self-protection (immune system)
 - ► Self-healing (Automated Planner for recovery)

OCµ Phase 1 & 2

- ► Conflicts between single Self-x services
 - ► Services influence each other
- ▶ No synergy between Self-x techniques used
 - ► Need similar data
 - ▶ Use same actions
- ► Automated planning
 - Very promising
 - ► Speed needs to be improved

OCµ Phase 3

- ► New architecture
 - ► Targeting Self-management of services in an open distributed system
- Organic Manager implements MAPE cycle
- Automated Planner
 - Self-configuration
 - ► Self-optimization
 - ► Self-healing
 - ► Start, stop, relocate services
- ► Reflex Manager

OC_μ Architecture

OC_μ Architecture

OC_μ Architecture

Monitor and Analyze

- ► Piggy-back of node information on application messages
- Store information in Information Pool
- ► Extract important information
- Aggregate and analyze information

Plan and Execute

- ► Online planning by Automated Planner
- ► Fast reaction by Reflex Manager
- ▶ Actuator
 - ► Execute plans
 - ► Handles conflicting plans

Planning Models

- ▶ Planner Language: PDDL (M. Ghallab, 1998)
- ► Planning round

	Boolean Model	Numeric Model
values	only boolean	also numeric
start	one instance / round	arbitrary instances / round
complexity	low	high
rounds needed	many	often only one

Self-Optimization Evaluation

- ► 10 nodes
- Start n services on one node
- ► Time until services are distributed and no relocation happens anymore

Reflex Manager

- ► Reuse of plans for similar states
 - ► Metric on states
 - ► Two proposed metrics
- ► Conflicting plans of Reflex and Planner Manager
 - ► Switching plans if possible

Conflicting Plans

Three cases:

- 1. Reflex Manager has no plan
- 2. Reflex Manager was first and the plan is already executed
- 3. Reflex Manager was first and the plan is partly executed

Possibilities for Conflicting Plans

- ▶ Plan R of Reflex Manager already executed
 - ► Roll back and execute plan P not applicable
 - ► Store plan P in Reflex Base if necessary for future use
- ► Plan R of Reflex Manager partly executed
 - ► Stop further execution by Actuator
 - Compare plans
 - ► Switch to plan P if possible

Comparing Plans

IF
$$(r_1 = p_1, ..., r_n = p_n)$$

OR (Actions mixed AND Order of actions unimportant)

THEN: switch from plan R to plan P ELSE: complete execution of plan R

Conclusion and State of Project

- ► New OCµ architecture developed
- ► Two-level approach for Organic Manager
- ► Automated Planner to realize self-x
- Concept
 - ► Reflex Manager for fast reactions
 - Actuator handles conflicting plans
- ► Already implemented in OCµ:
 - ► Basic Middleware
 - Automated Planner with two planning models

Future Work

- ► Data distribution / analyze / aggregation techniques
- Optimize and implement Reflex Manager
- Adapt Actuator to new architecture
- Evaluation of complete new architecture
- ► OCµ applied in OC Trust project
 - ► Energy grid
 - ► Computing grid

Publications

Outcome of Phase 1 & 2

- ▶ 24 publications
- ▶ 3 dissertations

Publications concerning new architecture

- Organic Computing Middleware for Ubiquitous Environments Michael Roth, Julia Schmitt, Rolf Kiefhaber, Florian Kluge, Theo Ungerer Organic Computing — A Paradigm Shift for Complex Systems, Springer Verlag Zürich, 2011, pages 339-351
- Realizing Self-x Properties by an Automated Planner
 Julia Schmitt, Michael Roth, Rolf Kiefhaber, Florian Kluge, Theo Ungerer
 Poster at the 8th International Conference on Autonomic Computing (ICAC), Karlsruhe, 2011
- Concept of a Reflex Manager to Enhance the Planner Component of an Autonomic/Organic System Julia Schmitt, Michael Roth, Rolf Kiefhaber, Florian Kluge, Theo Ungerer 8th International Conference on Autonomic and Trusted Computing (ATC), Banff, Canada, 2011, pages 19-30
- Using an Automated Planner to Control an Organic Middleware Julia Schmitt, Michael Roth, Rolf Kiefhaber, Florian Kluge, Theo Ungerer Fifth International Conference on Self-Adaptive and Self-Organizing Systems (SASO), Ann Arbor, 2011, accepted for publication