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Ubiquitousness of  parallel computers

Nvidia Fermi: 512 Cores Sony Playstation 3, IBM Cell  9 Cores
I t l SCC 48
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Ubiquitousness of parallel computers

Source: Hardware/Software Co-Design, Univ. of Erlangen-Nuremberg, Jan 2009. Programmable 5x5 core MPSoC for image filtering. Technology:
CMOS 1.0 V, 9 metal Layers 90nm standard cell design. VLIW memory/PE: 16x128, FUs/PE: 2xAdd, 2xMul, 1xShift, 1xDPU. Registers/PE: 15. Register
file/PE: 11 read/ 12 write ports. Configuration Memory: 1024x32 = 4KB. Operating frequency: 200 MHz. Peak Performance: 24 GOPS. Power consumption:
132,7 mW @ 200 MHz (hybrid clock gating). Power efficiency: 0,6 mW/MHz.
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Challenges in the year 2020

Architectures  ProgrammingArchitectures, Programming
and Management of

Applications for 1000s ofApplications for 1000s of
Processors in 2020?
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Challenges in the year 2020

• Complexity
– How to map dynamically applications onto 1000 or more processors while considering 

memory, communication and computing resource constraints?

• Adaptivity
– How and to what degree shall algorithms and architectures be adaptable (HW/SW, 

bit/word/loop/thread/process-level)?

• Scalabilityy
– How to specify and/or generate programs that may run without (great)

modifications on either 1,2,4, or N processors?

• Physical ConstraintsPhysical Constraints
– Low power, performance exploitation, management overhead

• Reliability and Fault-Tolerance
N it f ti f i ti ll t l d t– Necessity for compensation of process variations as well as temporal and permanent 
defects
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Invasion: Example
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Considered Abstraction Levels

Hw + Sw Control

Multi-

process-level, thread-level

Core

Hw-Ctrl.+ Func.loop-level w Ct l.  u c.

Processor
Array

loop level
FOR i=0 TO N DO

FOR j=0 TO M DO

Hw-Ctrl. / VLIW

…

instruction-level
ADD R1, R2, R3

FUs

H Ct l  / VLIW

MUL R4, R1, $4

JMP $42

Hw-Ctrl. / VLIW

SW-
Units

word-level, bit-level
01010001101010101010

10101010100011111111
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Vision and Potentials 

• Run-Time Scalability
– Today´s parallel programs are in general not able to adapt themselves to the– Today s parallel programs are in general not able to adapt themselves to the 

current availablity of resources. 
– Today´s computer architectures do not support any application-controlled 

resource reservation.esou ce ese a o

• Dynamic Self-Optimization possible through Invasion wrt. 
Resource Utilization– Resource Utilization 

– Power Consumption (Temperature Management)
– Performance

• Tolerance of Failures and Defects
– Today´s parallel programs just would not run (correctly) any more!

• Robustness
– Applications tolerate a variable availability of resources– Applications tolerate a variable availability of resources
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Potential: Resource Utilizations up to 100%
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Potential: Power and Temp. Management
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Potential: Performance Gain/Tradeoff

RAMRAMCPU0CPU0I/OI/O

R
A

M
R

A
M

BusBus

RR

B idB id
CPU1CPU1 CPU2CPU2

RAMRAM RAMRAM RAMRAM

BridgeBridge

RAMRAM RAMRAM

BusBusBusBus

RAMRAMRAMRAM

CPU3CPU3 CPU4CPU4

Folie 13



Potential: Robustness and Fault-Tolerance
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Basic Functionality of  Invasive Programs

• Invade
Construct(s) for request andConstruct(s) for request and 
reservation of resources 
(processors, memory, 
i )interconnect)

• Infect
Construct(s) for programming, ( ) p g g,
resp. configuration of resources 
(processors, memory, 
interconnect) for special servicesinterconnect) for special services

• Retreat
Construct(s) for  release of 

(

Concept invade-let (i-let)

resources (processors, memory, 
interconnect)
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Basics of Invasive Programming

i-let

- permission
- invade
- infect
- retreat
-

- speed
- utilization
- power/

temp …temp
- fault/error
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Project Area A – Basics

• Programming and Language Issues:
– Finding and classification of elementaryFinding and classification of elementary

(basic) constructs for invasive programs 
(the invasive command space) [A1]
Definition of an abstract kernel language– Definition of an abstract kernel language 
(syntax, semantics, type system) [A1]

– Embedding of command set into programming language(s) [A1]

• Mathematical Models for Effifiency and Utilization Analysis
of invasive applications [A1]

• Algorithm Engineering:
– Complexity and cost invasive algorithms [A1]– Complexity and cost invasive algorithms [A1]
– Scheduling and Load Balancing [A3]
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Basic Invasive Programming Constructs

• Infect
– Copying program code and data 

• Invade
– Allocation and reservation of system py g p g

to the claimed resources
– Parallel execution of the program 

i-lets (code + data)

y
resources

• Processors
• Communication channels

• Retreat
– Frees occupied resources

• Memory
– Returns a claim (allocated resources)
– Depends on the applications demand Frees occupied resourcesDepends on the applications demand 

of parallelism
– Depends on the current state of the 

resources (resource-aware)( )
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Invasive Programming Constructs

• Definitions
i l t– i-let:

• A piece of a program for invasive-parallel execution (code+data)
– claim:

• Set of allocated resources
(processors, memory, communication)

• Realization
– Using existing parallel programming languages, instead of 

designing a new languageg g g g
– Decision: Extension of X10 programming language
– Using X10 as base language for invasive computing
– Library-based approachLibrary based approach
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Languages and APIs for Parallel Programming
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Outline

• Invasive Programming in X10
– Introduction to X10
– Invasive Programming Library

• Simulation of Invasive Programs and MPSoC architectures
– Goals
– Simulation Model
– Case Study
– Future Work

Folie 26



X10 Programming Language

• X10 Programming Language
– Parallel object-oriented programming language– Parallel, object-oriented programming language
– Developed by IBM (since 2004)

G l P ti• General Properties
– Supports distributed, heterogeneous processor and memory architectures
– Syntax between Java and Scala
– OO language features:

• Classes, objects, inheritance, generic types
– Functional language features:

• Type inference, anonymus functions, closures, pattern matching
– Parallel constructs:

• Concurrency, synchronization, distribution, atomicityy, y , , y
– PGAS Programming Model
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PGAS Programming Model

• PGAS: Partitioned Global Address Space
– Threads of a program have a global view they share the same address space

Source: [1]

Threads of a program have a global view, they share the same address space
• Each thread sees the entire data set
• No need for replication of data, as in the case of message passing

Address space is divided into partitions– Address space is divided into partitions
• Partitions may be physically distributed
• Threads may reference data at other partitions (remote references)

P i f d t h i th d• Programmer is aware of data sharing among threads
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X10 Parallel Constructs

• PGAS memory is called Place in X10
• PGAS thread is called Activity in X10PGAS thread is called Activity in X10

• Activity
Li ht i ht th d ( l l t POSIX)

async {S}
• Creates a new child activity at 

– Light-weight thread (user-level, not POSIX)
– Creation with async
– Synchronization via finish, atomic

the current place and 
asynchronously executes S

• Returns immediately
– Activities cannot be named or aborted

• Place
finish {S}

• Executes S and waits until all • Place
– Notion of a shared memory multi-processor
– Potentially different compute capabilities

Holds activities and objects

recursively spawned activities 
are finished

( )– Holds activities and objects
– New places cannot be created at runtime

at (P) {S}
• Executes S at place P
• Current activity blocks

Folie 31
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X10 Compile Flow

Source: [2]
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Hello World in X10

public class HelloWorld {
public static def main(args:Array[String](1)) {
finish for(p in Place.places())
async at (p)

Console.OUT.println(“Hello from place ”+here.id);
}

}

$ x10c++ o hello HelloWorld x10

}

$ x10c++ -o hello HelloWorld.x10
$ mpirun -n 4 hello
Hello from place 0
Hello from place 2
Hello from place 3
Hello from place 1Hello from place 1
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Invasive Programming Concepts

constraints
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Invasive Programming Library

• Basic control flow

val claim = Claim.invade(constraints);val claim   Claim.invade(constraints);
claim.infect(ilet);
claim.retreat();

• Constraints

val constraints = new AND();();
constraints.add(new PEQuantity(1,8));
constraints.add(new PlaceCoherence());
constraints.add(new MaximumLoad(0.7f));

• i-lets

constraints.add(new MaximumLoad(0.7f));

val ilet = (id:IncarnationID) => {
Console.OUT.println(“Hello from ilet “+id);

}

Folie 35
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Constraint Hierarchy
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Example: Color Space Transformation

• PGAS memory is called place in X10
val img = Image.load(filename);
val constraint = new AND();y p

• PGAS thread is called activity in X10

• Activities

();
constraint.add(new TypeConstraint(PEType.TCPA));
constraint.add(new PEQuantity(1));
constraint.add(new TCPALayout(10,10));• Activities
– Light-weight

constraint.add(new TCPALayout(10,10));

try {
val claim = Claim invade(constraints);val claim = Claim.invade(constraints);
// parallel execution
claim.infect((id:IncarnationID) => {
C tT f f dI tTCPA(i )ComponentTransform.forwardIctTCPA(img);

});
} catch (e:NotEnoughResources) {

// local execution
ComponentTransform.forwardIctCPU(img);

}
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Project Area B – Architectures

• Invasive Computer Architectures:
Invasion Control Architectures for networks of– Invasion Control Architectures for networks of 
ASIP- (iCore [B1]), RISC- (CPU [B3]) and Tightly-
Coupled Processor Arrays (TCPA [B2])

– Microarchitecture:
• Segmentable and reconfigurable 

memory, processor, instruction sets and 
i t t [B1 B2 B4]interconnect [B1, B2, B4]

• „Instruction set“ - definition for 
basic functionality  [B1,B2]
Hard are s pported in asion• Hardware-supported invasion 
(Invasion-Controller) [B2]

– Macroarchitecture:
• Hardware-supported Invasion 

(CIC [B3])
• Invasive Communication Networks (iNoC [B5])

O– Monitoring and Design Optimization [B4]
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Project Area C – Tools

• Run-Time System [C1]
– Methods, principles and abstractions for, p p

extendable, (re-)configurable and adaptable
OS structures for invasive computing systems 

– Agent technology for Scalable Resource Managementge ec o ogy o Sca ab e esou ce a age e
– Techniques for Virtual Power Management
– iRTSS: (de-centralized) Services of Operating Systems for Invasive 

ArchitecturesArchitectures

• Simulation and Compiler [C2, C3]
– Simulation (Speed, HW/SW, Heterogeneity) [C2]
– Compiler

• Symbolic Parallelization: Loop Invader [C3]y p [ ]
• Machine Markup Languages [C3]
• Backend Design (X10 -> Sparc, X10 -> TCPA) [C3]
• Invasification [C3]
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Outline

• Invasive Programming in X10
– Introduction to X10
– Invasive Programming Library

• Simulation of Invasive Programs and MPSoC architectures
– Goals
– Simulation Model
– Case Study
– Future Work
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Functional Simulation

• Goals:
– Enables early validation of invasive programming conceptsEnables early validation of invasive programming concepts
– Allows the investigation of a broad range of different hardware platforms
– Full hardware and software implementations are not yet available

• Purpose:
– Application programmerApplication programmer

• Learn to think invasively 
• Analyze benefits of resource-aware programming

– Architectural designersg
• Explore different invasive architectures

– Operating systems engineers
• Investigate invasion strategies

Folie 41



Design and Implementation

• Design Decisions:
– Functional level, not cycle-accurate X10

• Otherwise much too slow
– Realization of the main commands

• invade
i f t

program

invadeinvadeinvade Behavioral
• infect
• Retreat

– Rudimentary architecture emulation
Fully X10 based

infect
retreat
infect
retreat

……

infect
retreat

…

simulation
Resource
variants

(#Places,
#Proc.)Emulation– Fully X10-based

• Highly parallel and distributed 
implementation

• Light-weight threads

PGAS-
architecture

Light weight threads

• Current Restrictions:
– Only processing resources modelOnly processing resources model

• No communication, or I/O resources 
model yet

– No timing model yet
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„Big Picture“ of the Functional Simulator

• Components:
– Application level
– Invasive programming library
– Resource management
– MPSoC architecture emulation

E l ti th h t• Emulation through a concept 
called “Hardware Threads”
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Processing Resource Simulation Model

• Hardware Threads:
– Encapsulate all important HW state 

information
Application

i lets
Hardware 
Threads

– Interact with the runtime system
– Realized by X10 activities

i-letsThreads

X10 Activities• Static Properties:
– PEType
– Local Memory

X10 Activities

y

• Dynamic States:
– Functionality realized by a state y y

machine
– Events cause state changes

• Monitor Functions:
– Simulate physical or logical states of 

a processing resource
T t L d P– Temperature, Load, Power 
Consumption, Faultiness
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Simulation of Invasion on MPSoCs

• Properties:
– Tiled architectureTiled architecture
– Connected via a NoC
– Heterogeneous compute tiles

• RISCRISC
• iCore
• TCPA

– Augmented with monitor informationg
– Topology

• MPSoC Modeling:g
– Using the previous processing resource 

simulation model
– Mapping on a class hierarchy

Architecture

– Architecture is the root
– Each tile consists of several

processing elements
E l ti th h h d th d

Tile Tile Tile ············

RISC ICoreRISC ICore– Emulation through hardware threads

Folie 45
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MPSoC Modeling Example

// create a new architecture
val arch = new Architecture();();
// create a new tile within this architecture
val tile = arch.createTile();
// create four RISC CPUs within the tile
for (i:Int=0; i<4; i++) {

val pe = tile.createRISC();
// specify the properties of the RISC CPU
pe.peType = PEType.RISC;
pe.cacheType = CacheType.FourWayAssociative;
pe.localMem = 2048; // KiB

t h d 28 // ipe.scratchPadMem = 128; // KiB
pe.clockFrequency = 1500; // MHz
pe.isMigratable = false;
pe isPreemptible false;pe.isPreemptible = false;
pe.hasFPU = true;

}
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Simulation

• Simulator
– Global configuration of the simulation environment

• Topology size, invasion strategy, …

– Initializes and activates the emulated architectureInitializes and activates the emulated architecture

St t li ti

Simulator.init(args);

– Starts applications
• With a certain delay of ms
• At a particular tile address within the topology

Simulator.startApplication(app, 500, new GridAddress(1,2));

– Exits the emulated architecture and shuts down the created activities

Simulator.exit();
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Case Study: Temperature-Aware Load Balancing

F PE til• Four PE tile
• Three job batch 

processing application
• Allocating two PEsAllocating two PEs

• Maximum Temperature 
Constraint: 70°C
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Current and Future Work

• Current Work:
– Invasive computing idea provides resource-aware programming facilities
– Library-based language implementation of invasive computing using the 

X10 programming language
Extension of X10 instead of designing a new language• Extension of X10 instead of designing a new language

– Framework to compile and simulate resource-aware programs on emulated 
MPSoC platforms

• Early simulation facilities in order to validate the invasive programmingEarly simulation facilities in order to validate the invasive programming 
constructs

• Future Work:
– Extension of the framework for the modeling of the allocation of

• Memories
• Communication resources

– Provide a proper timing model
• Design space exploration of invasive applications and architectures 

becomes possible
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Project Area D – Applications

• Application Areas:

– Robotics [D1]
> Real Time-> Real-Time

-> Fault-Tolerance
-> Performance 

– Scientific Computing [D3]
-> Invasive Computing on HPC-Systems> Invasive Computing on HPC Systems
-> Ressource utilization
-> Performance
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TRR 89 – Project Structure
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TRR 89 – Funded Institutions and Researchers

Project Area A:
Fundamentals, 
Language and Algorithm 
Research

Project Area B:
Architectural Research

Project Area C:
Compiler, Simulation, 
and Run-Time Support

Project Area D:
Applications

Research
A1: Basics of Invasive
Computing

B1: Adaptive Application-Specific 
Invasive Micro-Architectures

C1: Invasive Run-Time 
Support System (iRTSS)

D1: Invasive Software-
Hardware Architectures 
for Robotics

T i h/S lti H k l/Hüb /B S h öd P ik h t/ Dill /A f /Teich/Snelting Henkel/Hübner/Bauer Schröder-Preikschat/ 
Lohmann/Henkel/Bauer

Dillmann/Asfour/
Stechele

A3: Scheduling and Load
Balancing

B2: Invasive Tightly-Coupled 
Processor Arrays

C2: Simulation of Invasive 
Applications and Invasive 
Architectures

D3: Multilevel 
Approaches and 
Adaptivity in ScientificArchitectures Adaptivity in Scientific
Computing

Sanders Teich Hannig/Gerndt/Herkersdorf Bungartz/Gerndt

B3: Invasive Loosely-Coupled C3: Compilation  and Code 
MPSoC Generation for Invasive 

Programs

Herkersdorf/Henkel Snelting/Teich

B4: Hardware Monitoring
System and Design Optimization 
for Invasive Architectures

Schmitt-Landsiedel/Schlichtmann

B5: Invasive NoCs

Becker/Herkersdorf/Teich
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TRR 89 – Validation & Demonstrator Roadmap

• 2-level validation concept:2 level validation concept:
– Phase I: 

Early Concept Validation
Demonstrator (FPGA-based)

– Phase II: 
InvasIC ASIC Demonstrator

• InvasIC Lab (TP Z2)
– Each location 

has one lab room 
from first moment on

– 1 technician per– 1 technician per 
site

– Established milestone
roadmap
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Impact and Risks DFG TRR 89 InvasIC

• Introduction of a new paradigm of resource-aware programmingIntroduction of a new paradigm of resource aware programming
as well as new architectural support by reconfigurable MPSoC-
architectures: InvasICs

• Expected impact on:
– Future advanced processor development for MPSoCsFuture advanced processor development for MPSoCs
– Future programming environments for Many Core Systems
– Development of parallel algorithms

• Potential Risks:
Acceptance of resource aware programming– Acceptance of resource-aware programming

– Cost of Invasion (Hardware/Software, Timing)
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