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Evolving Societies of 
Learning Autonomous Systems 

Project Goal

Self-organization of individually learning robots i n groups

How to achieve a specified goal?
→ self-exploration, individual learning

How to converge to group behavior? 
→ imitation

How to control emergent behavior? 
→ decentralized evaluation functions inspired by biological principles 
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StrategyStrategy

Imitation

Problem: Repetitive observation is too seldom in 
multi-robot scenarios to allow for a real 
copying process.

Solution: See imitation not as copying, but rather 
as a means to direct its own exploration 
process.
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Problem: Controlling behavioral 
heterogeneity resulting from 
decentralized exploration

Solution: Calculate behavioral difference 
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Experimental Results
Scenario: Robot I tries to imitate robot D.
Goal: Learn new behaviors to transport the 

ball to the ramp
Independent of the actual behavior and strategy 
repertoire of D the imitator correctly understands 
the observed behavior it is familiar with (right 
chart):
� “B”: behavior “move to ball”
� “G”: behavior “move to goal”
� Not recognized: the lifting of the ball. The robot 
will direct its future exploration efforts at this point.
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� Drives are high-level goals
� Depend on time and perception
� „well-being“ defined by thresholds
� Motivation: vector of current drive

state to well-being region
� Motivation change: 

reward for the strategy

� Model-based Reinforcement 
Learning (Value Iteration, SMDP)

� Dynamically abstracting state space
� Actions: goal functions for the skill 

layer
� For each drive one separate SMDP

� Learning phase
1. Random exploration
2. Data reduction (clustering)
3. Dimension reduction (PCA)
4. Regression in PCA space:

one function for every actor

� Execution phase
1. Project perception into PCA 

space
2. Evaluate previously learned 

functions
3. Apply results
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Algorithm
1. Collect affordance data by observing all 

robots
2. Build Bayesian Affordance Networks 

for each robot
� Edges: conditional dependencies
� Nodes: affordance probabilities

3. Calculate difference of the Affordance 
Network Graphs (edge difference + 
node differences)
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Application Example
� Used to find the best robot to imitate
� Used to determine the group‘s behavior 

diversity (information entropy)
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