	Evolving Societies of Learning Autonomous Systems			
	Franz Rammig, Bernd k	Kleinjohann	, Willi Richert	
Universität Paderborn	DFG SPP 1183 Organic	Computing	Genic Computing >	
Project Goal			Architecture	
Self-organization of individually learning robots in groups			controller observer	
How to achieve a specified goal? \rightarrow self-exploration, individual learning				

How to converge to group behavior?

imitation \rightarrow

How to control emergent behavior?

decentralized evaluation functions inspired by biological principles \rightarrow

- Model-based Reinforcement Learning (Value Iteration, SMDP)
- Dynamically abstracting state space
- Actions: goal functions for the skill layer
- For each drive one separate SMDP
- Abstraction and policy for Drive 1

Abstraction and

policy for Drive 0

Experimental Results

- Robot *I* tries to imitate robot *D*. Scenario:
- Learn new behaviors to transport the Goal: ball to the ramp
- Independent of the actual behavior and strategy repertoire of *D* the imitator correctly understands the observed behavior it is familiar with (right

Algorithm

- 1. Collect affordance data by observing all robots
- 2. Build Bayesian Affordance Networks for each robot
 - Edges: conditional dependencies
 - Nodes: affordance probabilities
- 3. Calculate difference of the Affordance Network Graphs (edge difference + node differences)

Application Example

- Used to find the best robot to imitate
- Used to determine the group's behavior diversity (information entropy)

Institute

Heinz Nixdorf Institut Universität Paderborn Fürstenallee 11, 33102 Paderborn

Applicants

Prof. Dr. Franz J. Rammig Dr. Bernd Kleinjohann

Contact person

Dipl. Inform. Willi Richert richert@c-lab.de Tel: 05251-606120