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Learning to look at humans -

what are the parts

of a moving body?

Abstract

We present a system that can segment articulated, non-rigid mo-
tion without a priori knowledge of the number of clusters present in
the analyzed scenario. We combine existing algorithms for tracking
and extend clustering techniques by a self-tuning heuristic. Appli-
cation to video sequences of humans shows good segmentation into
limbs.

1 Motivation

Despite considerable effort creating an artificial system capable of analyzing
human body pose and motion is still an open challenge. Such a pose esti-
mation system (PE-system) would enable machines to communicate with their
users in a more natural way (body language interpretation) or to survey ac-
tivities of individuals to anticipate their intentions (traffic/security). Existing
PE-Systems are by far no match for the human brain when it comes to the
task of motion and pose estimation, let alone behavior interpretation. These
systems are narrowly tuned to their field of application and work with relatively
inflexible, pre-defined models of human shape and motion. In our project, we
attempt to create a PE-System which initially has no idea of its environment
and the humans inhabiting it. Instead, it should gather knowledge during its
lifetime and build up its own environmental and human model, like the hu-
man visual cortex does at some time in its development. For this, we combine
state-of-the-art computer vision techniques and biologically inspired principles
like (controlled) self-organization and machine learning.

2 Feature tracking

Tracking human motion with sparse features provides an acceptable tradeoff
between accuracy and computational effort. Using the sparse tracking tech-
nique described in [1] together with the feature initialization techniques of [2]
we are able to produce feasible tracking of features through all frames of our
image sequences. Since tracking quality is strongly dependent on the degree of
saliency of the tracked features, we used easily trackable clothing in all of our
training experiments with real data (figure 1).
When clustering feature trajectories produced by the feature tracking stage,
our system relies on the technique of self-tuning spectral clustering, proposed
by [3]. Nevertheless, several improvements in order to use their technique for
motion segmentation had to be made which are described below.

Figure 1: Feature tracking via the KLT-Algorithm [1], [4]

3 Trajectory distance measure

Since trajectories represent a spatio-temporal sequence of image coordi-
nates, changing the distance measure proposed by [3] is inevitable. We use
a distance measure inspired by [5]:
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4 Heuristic scale selection

The clustering quality of the spectral clustering method proposed by [3] strongly
depends on a local kernel parameter, σi. This paramter is found using a heuris-
tic that turned out to be insufficient for our purposes. Therefore, we adopted
a novel heuristic well-adapted to our demands:

1. Let E be a trajectory data source with N elements, consider element
ei in frame t.

2. Define the Delaunay-neighborhood of ei as Ni = [n1 . . . nki], consisting
of those ki data elements which are neighbors of ei in a Delaunay-
Triangulation in R2 constructed over the positions of all elements in E
at time t.

3. For each element ei build up a sorted list Li = [v1, . . . vki] with
aiv1
≤ aiv2

≤ . . . aivki
and v1 . . . vki ∈ Ni, where aij is the Euclidean

distance between data element ei and ej at time t.

4. When element ei moves in an arbitrary way, it is highly likely that its
M closest Delaunay-neighbors Li[1 . . .M ] will move coherently with
ei. In our experiments, we used M = 3.

5. Each element ei owns a sorted list Ti of trajectory distances be-
tween itself and all other elements of E: Ti = [ai1, . . . , aiN ] with
ai1 ≤ ai2 . . . ≤ ain. aij is identical to (1).

6. The first P entries of Tk with k ∈ Li[1 . . .M ] ∪ {i} will, with high
likelihood, represent distances from ei to elements of E being in the
spatial vicinity of ei and simultaneously moving coherently with ei. Let
σ̃k be the mean of those P distances for each data element ek. P = 3
in all our experiments.

7. For each data element ei sum up all σ̃k with k ∈ Li[1 . . .M ] ∪ {i}.
Let this sum be σi.

8. Experimentally, this σi-value turned out to be too small, so we decided
to artificially enlarge it by coupling it to the total number of Delaunay-
neighbors of i: σi = σi · KM .

This heuristic approach can surely be rendered into producing wrong results
by using strongly corrupted input data or constructing pathological situations.
Nevertheless, it yields very good results in practice, as can be seen in figure 2
and figure 3.

5 Iterative clustering methodology

Our system combines recursive clustering adopted from [6] with self-tuning
spectral clustering from [3]. Clustering starts with the data set E and an
empty list of limb clusters. The Θ-score, as given in (2) is a good measure
for clustering quality in every iteration.
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We could identify three different types of outcomes for subdividing a cluster
C into subclusters C1 and C2 during iterative clustering:

Case 1: Θ < 0.975: invalid clustering, C is added to the list of limb
clusters.

Case 2: Θ ∈ [0.975 . . . 0.995[: imperfect clustering, try to boost cluster-
ing quality by identifying one outlier in C1 and C2. Those are temporar-
ily removed from C, subdivision is again attempted, and the outliers
are then reassigned to the subclusters they were in before if the new
subdivision is successful.

Case 3: Θ > 0.995: valid clustering, continue recursive splitting on both
C1 and C2.

6 Results and discussion

Limb segmentation results for some highly non-rigid motion examples are shown
in figure 2, where three clusters were identified, and in figure 3, where the mo-
tion is more complex and led to the identification of seven clusters. The results
are quite precise, nearly all generated segmentations are very close to the ac-
tual limb structure. It can be stated that in the case of well-behaved input
data (separate limbs showing strong motion, tracker data smooth and contin-
uous) our system finds correct segmentations of the complete articulated body
structure.

Figure 2: A simple sequence, which is correctly segmented into body, fore-
arm and upper arm.

Figure 3: A more complex sequence including structured background. Clus-
tering selects both forearms and upper arms, body, head, and background.

Figure 4: Segmented sequence, automatically estimated skeleton overlaid
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