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Motivation

unstructured, 

dynamically changing 

environment

no explicit model of 

the environment

-> fault-tolerance, 

safety

complex control 

systems

no explicit fault 

model

-> engineering 

bottleneck

Autonomous mobile robots in human environments



ORCA –
Organic Robot Control Architecture
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- Monitor:    anomaly detection 
- Memory:   short term history (learning)
- Reasoner: hard real-time determination 

of a counteraction

Variant of Observer/Controller Architecture



Platform: six-legged walking machine 
OSCAR

New Features:

- Digital, stronger servos

- Feedback of internal servo states

- Enhanced lifting capacity

- Ultrasonic sensor ring

- Leg-(de)attachment

- More computational power



High-level, sensor-based behavior



R.A.D.E.
Robot Anomaly Detection Engine

 Artificial immune system based anomaly detection method for fault tolerant 
robots

 Based on self-nonself discrimination and clonal selection principles 
found within the natural immune system

 Already presented information theoretical approach for anomaly 
detection is also in further development

[1,2]



R.A.D.E.
Robot Anomaly Detection Engine

 Implementation example: 

[1,2]



R.A.D.E.
Robot Anomaly Detection Engine

Experiment – Anomaly detection
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R.A.D.E.
Robot Anomaly Detection Engine

with RADE dynamics

Experiment – Anomaly detection
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 Swarm Intelligence based method for robot reconfiguration.
Used to reconfigure the spatial posture of the robot’s 
legs, after some failure has occurred within them.

Based on the intrinsic properties seen within swarms 
and boids in nature.

S.I.R.R.
Swarm Intelligence for Robot 
Reconfiguration

[1,3] 

cohesion separation alignment



S.I.R.R.
Swarm Intelligence for Robot 
Reconfiguration

[1,3] 

 Example of robot reconfiguration using S.I.R.R. - Schematic view 

 Experimental test-case reconfiguration on robot OSCAR

Reconfiguration scenario – legs 0, 2, 3, 4 get malfunctioned



Self-optimization by learning

• Design issues of learning

– Learning strategy (directed self-learning)

– Learning architecture (ORCA architecture)

– Safe learning (controlled self-optimization)

• Interplay of learning and faults

– Detect faults by learning (diagnostic adaptive filters)

– Compensate faults by learning (corrective adaptive filters)

– Detect faults of learning itself (ODIL approach)

– Compensate faults of learning itself (SILKE approach)

• Learning at different architectural levels

– Signal level (adaptive filters)

– Functional level (sTS fuzzy systems)

– Module level (ELISE approach)
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Adaptive Filters for Diagnosis

• Train filter online to represent 
dynamic behavior of the 
system

• Classification by identifying 
patterns in the learnt filter 
coefficients

• Cooperation of diagnosis and 
local compensation to signal 
uncorrectable faults to higher 
levels

• Investigations on OSCAR 
kinematics

[4,5]



SILKE approach

• Self-optimization by 
function approximation

• Idea: control the self-
optimizing process to 
handle:

– Chaotic feedback loop

– Stability-plasticity-
dilemma

• Reflect and control meta-
level properties of 
underlying system

• Efficient for special Takagi-
Sugeno fuzzy systems



SILKE approach

• So far: demonstration on 
real systems

• New: formalization and 
proof of system properties

• Current results: proof that 
SILKE approach with 
averaging template guides 
learning towards higher 
local linearity

[7]
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Problem: Interrupted Learning

• Situation: Multiple selfopt. 
systems work in turn

• Learning is problematic in 
switching regions of input space, 
only sparse learning inputs

• May cause individual learning 
systems to converge too slowly 
or even to converge not at all

• Aim: Exploit learning stimuli in 
the switching regions as effective 
as possible



ELISE approach
(Exploiting Learning stimuli in Interrupted 

SElf-optimization) 

• Allow learning to continue 
after switching between 
BCUs

• Generate additional 
learning stimuli after 
unsuccessful switchings

• Adapt switching criteria to 
speed up convergence

Speed up convergence

 Improved system 
robustness
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Summary

• Current work:

– Anomaly detection

– Self-healing & reconfiguration
• On signal level

• On leg level

– Controlled self-optimization
• Formal analysis

• ELISE approach

• Future work until summer 2009:

– Incorporation of learning into robot OCUs

– Learning in unhealthy system states
– Self-organizing high-level behaviors and reflexes
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Detection of different anomalies using 
hierarchical Leg-Health-Signals

disturbance

anomaly

serious 
malfunction

Hierarchical structure of HS 
allows:

• source detection

• classification

[8]



 Snapshots of dynamics of R.A.D.E. anomaly detection surface 


