Multi-Objective Intrinsic Evolution of Embedded Systems (MOVES)

Paul Kaufmann, <u>Marco Platzner</u> Computer Engineering Group University of Paderborn {paulk, platzner}@uni-paderborn.de

Outline

- motivation/architecture
- Δ to last status meeting
- tackling scalability
- application: prosthetic hand control
- summary

Motivation / Vision

- investigate intrinsic evolution as a mechanism to achieve selfadaptation and –optimization for autonomous embedded systems
- an embedded system ...
 - adapts to slow changes by simulated evolution
 - typically, change of environment
 - adapts to radical changes by switching to pre-evolved alternatives
 - typically, change in computational resources
 - requires intrinsic evolution for autonomous operation

Δ to Last Status Meeting

- last status meeting
 - hardware representation models
 - cartesian genetic programming (CGP), ECGP
 - multi-objective evolutionary optimizers (MOEAs) SPEA2, TSPEA2
 - evolved arithmetic circuits and hashing functions
 - evaluation framework
 - MOVES toolbox for experimenting with evolvable hardware (EHW)
- new work done
 - evolutionary algorithms

 tackling scalability 	[Kaufmann & Platzner, GECCO '08]
 comparing GA with MOEAs 	[Knieper et al., BICC '08]
reconfigurable SoC	
 hardware accelerator for k-NN thinning 	[Schumacher et al., ERSA '08]
application examples	
 prosthetic hand controllers 	[Glette et al., AHS '08]
	[Glette et al., ICES '08]

Hardware Representation Models

 cartesian genetic program [Miller & Thomson, EuroGP '00]

- ECGP [Walker & Miller, EuroGP '04]
 - single row of functional blocks, 1+4 evolutionary strategy
 - automated module creation: compress / expand operators
 - nodes between two <u>randomly chosen</u> nodes define a new module

Scalability

- scalability can be tackled along three dimensions
 - object granularity
 - knowledge representation
 - representation model

- new automated module creation and propagation approaches
 - instead of randomly aggregating nodes to modules, consider
 - age-based modules (inspired by 'organs')
 - cone-based modules (inspired by classical circuit synthesis)

Age-based Module Creation

- prefer aged nodes over randomly selected ones
 - each primitive node (function and inputs) is assigned an age which equals the number of generations it is untouched
 - module creation: tournament selection based on the mean age of module candidates

Cone-based Module Creation

- modules have to be cones
 - for every node in the module there exists a path to the module root which is entirely in the cone
 - considers connections; aged-based and random module creation aggregate primitive nodes without considering connections
- avoid reconvergent paths
 - modules must be convex sub-graphs

Cone-based Crossover

- propagate modules (cones) between chromosomes
 - use genetic algorithm instead of evolutionary strategy
- preserve routing between module and chromosome

Results: Module Creation

reduction of computational effort relative to random module creation

- age-based module creation better for six out of seven benchmarks
- cone-based module creation better for multipliers
 - multipliers are more complex and more regularly structured than the other benchmarks

September 17-18, 2008

Results: Cone-based Crossover

reduction of computational effort relative to 1+4 ES, GA with population sizes of 5 and 50

	2x2 mul	3x3 mul	3-parity	4-parity	85% emg classifier	95% emg classifier
GA-5	3.77%	71.51%	-370.94%	-1,217.21%	-8.76%	-13.10%
GA-50	-53.99%	-341.88%	-130.39%	-1,256.51%	-57.86%	-36.39%

- GA-5 outperforms ES only for multipliers
- GA-50's increased population size not beneficial
 - potential for recombination does not outhweigh the larger computational effort per generation

Application: Prosthetic Hand Control

- classification of electromyographic (EMG) signals
 - evolvable hardware previously applied for this task [Kajitani et al., ICES '98] [Torresen, ICES '01]
- investigation of different EHW approaches
 - collaboration with Uni Oslo [Glette et al., ICES '08]
- comparison of EHW with conventional classifiers
 - collaboration with Uni Passau and Uni Oslo [Glette et al., AHS '08]
- towards 'real-world' application
 - longer-term measurements, measurements on amputees
 - collaboration with Winkler Orthopädietechnik, Minden

System Setup

- four EMG electrode pairs placed on forearm
- signals recorded and classified on a PC

- pick first 1.9 s of the "steady state" phase
- smooth signal by RMS
- extract 10 features per channel
- 40 features for a single contraction (movement)

Conventional Classifiers

- kth-nearest neighbor (kNN)
 - baseline method, k=5

- decision tree (DT)
 - built from if-then rules, each leaf represents a category decision
 - trained by the

EHW1: ECGP + agebased Module Creation

 multiple category detectors (ECGP chromosomes) form a category detection module

 maximum detector selects the category with the most activations

EHW2: Functional Unit Row Architecture

- previously applied to face image and sonar signal recognition [Glette et al., AHS '07] [Glette et al., ICES '07]
- architecture tailored to classification tasks
- implemented as virtual reconfigurable circuit for fast online evolution

Experimental Setup

- EMG signal sampled from one subject on three consecutive days, each with 20 iterations of 8 movements
- leave-one-out cross validation
 - experiments for separate days: day1, day2, day3
 - combining all days: day1-3
- training on two days and leaving one day out for testing: 2of3
 - believed to be a more realistic scenario

Example Results: Training and Test Errors (over all movements)

TEST ERRORS (GENERALIZATION)

	Dayl	Day2	Day3	Day1–3	2 <i>of3</i>
kNN	3.5 %	4.6 %	4.6 %	4.5 %	5.6 %
DT	9.7 %	11.3 %	10.5 %	9.0 %	15.9 %
SVM	4.2 %	4.0 %	2.6 %	4.5 %	5.4 %
EHW1	9.8 %	4.0 %	5.3 %	9.0 %	10.6 %
EHW2	9.0 %	4.6 %	4.0 %	4.9 %	8.4 %

TRAINING ERRORS (APPROXIMATION)

	Day1	Day2	Day3	Day1–3	2 <i>of3</i>
kNN	2.8 %	2.7 %	4.0 %	3.6 %	3.4 %
DT	1.4 %	2.0 %	1.3 %	1.8 %	2.0 %
SVM	1.4 %	0.7 %	2.0 %	3.6 %	2.6 %
EHW1	5.0 %	5.0 %	5.0 %	5.0 %	5.0 %
EHW2	1.9 %	0.8 %	0.0 %	3.6 %	2.6 %

Longer-term Measurements

- 121 measurements over 22 days, at different day times
 - classify 11 movements with SVM; 5/10/20/30 data sets used for training
 - classify every 10 ms, keep 15 most recent results in queue and vote

Summary

- Δ to last status meeting
 - evolutionary algorithms
 - tackling scalability
 - comparing GA with MOEAs
 - reconfigurable SoC
 - hardware accelerator for k-NN thinning [Schumacher et al., ERSA '08]
 - application examples
 - prosthetic hand controllers

[Kaufmann & Platzner, GECCO '08] [Knieper et al., BICC '08]

[Glette et al., AHS '08] [Glette et al., ICES '08]

- collaborations
 - Bernhard Sick & Thiemo Gruber, University of Passau
 - Jim Torresen & Kyrre Glette, University of Oslo
 - Winkler Orthopädietechnik, Minden
- tutorial on Evolvable Hardware @ ARCS'08
 - introduction and experiments with MOVES toolbox
 - together with Kyrre Glette and Jim Torresen

Thank you for your attention!

September 17-18, 2008

23