Organic Traffic Control Collaborative (OTC²)

7th colloquium of the DFG SPP Organic Computing, Zurich, Switzerland September 17th/18th, 2008

J. Branke, <u>H. Prothmann</u>, H. Schmeck Karlsruhe Institute of Technology

J. Hähner, C. Müller-Schloer, S. Tomforde Leibniz Universität Hannover

Motivation Organic Traffic Control

OTC architecture

- adapts autonomously to its changing environment,
- *learns new control strategies* when necessary, and thereby
- *limits manual intervention* and effort for setup and maintenance.

Evaluation in a *realistic scenario* showed *promising results*.

SRA

Motivation

Organic Traffic Control Collaborative

Goals

- Investigate possibilities for collaboration
- Study different architectural variants

Current focus

- *Traffic-responsive* creation of Progressive Signal Systems (PSS)
- Decentralised operation

06 October 2008

Outline

• Decentralised Progressive Signal Systems

- Determine collaborating nodes
- Determine cycle time
- Determine offsets
- Experimental results
 - Arterial road
 - Manhattan network
- Conclusion

06 October 2008

Decentralised Progressive Signal Systems
1. Determine collaborating nodes

Traffic-dependent selection of suitable partners for a PSS

Algorithm running locally at each node *j*:

- **1**. Node *j* locally determines its strongest turning " $i \rightarrow k$ ".
- 2. Node *j* informs its desired predecessor *i*.
- 3. Local matching: Is *j* the desired predecessor of *k*?
- Yes \rightarrow Acknowledge partnership.
- No \rightarrow Reject partnership.

Result Nodes in PSS know their predecessor and successor. Start and end node know their special position.

Decentralised Progressive Signal Systems 2. Determine cycle time

Common cycle time as a prerequisite for coordination

• Shorter cycles decrease the node capacity (due to clearance times)

- Longer cycles increase delays in undersaturated traffic conditions
- → Provide *sufficient capacity* while *keeping short delays*

How can this trade-off be realised?

Each node keeps track of

- its own desired cycle time (DCT) (determined by LCS invocation, tends to be short due to delay optimisation)
- an agreed cycle time (ACT) (maximum of other DCTs).

Decentralised Progressive Signal Systems

2. Determine cycle time

Echo algorithm for cycle time determination

- 1. Each node *i* determines *DCTi* and sets *ACTi* := *DCTi*.
- 2. Node 1 sends ACT₁ to its successor.
- 3. Node *i* receiving ACT_{i-1}
 - sets ACTi := max {DCT_i, ACT_{i-1}}, and
 - sends ACT_i to node i+1.
- 4. ACT is propagated back to node 1 when the last node was reached.

Decentralised Progressive Signal Systems

3. Determine offsets

Starting at the first node, the nodes successively

- select TLCs (by LCS invocation with respect to ACT),
- determine/ communicate
 - the absolute start time s of the PSS at the first node,
 - the relative start p_i of their synchronised phase,
 - the travel time $d_{i-1,i}$, and
 - their relative offset $o_i = o_{i-1} + p_{i-1} + d_{i-1,i} p_{i.i}$

8

Decentralised Progressive Signal Systems Establish synchronisation

Establishing a PSS

Intermediate traffic light controllers to implement offsets

Technical requirements

- Synchronised clocks at collaborating traffic nodes
- (Local) communication capability

Necessary extensions of the OTC architecture

- Cycle time constraint for LCS and EA
- Cycle time modification for existing traffic light controllers

Experimental results Arterial road

Arterial road with 3-phased intersections

Comparison OTC nodes (Phase I) vs. collaborating OTC-DPSS nodes (Phase II) Criteria

- Network-wide travel time and number of stops
- Local delay times at nodes

06 October 2008

Experimental results Arterial road

Network-wide results

Local delays

ISE

SRA

MFB

Experimental results Manhattan network

Manhattan network with 4-phased intersections

ISE

SRA

AIFBC

Experimental results Manhattan network

Number of stops

7% reduction

Travel times

Mostly unaffected, but increased after abrupt traffic change

→ Improve traffic observation

IFB

Experimental results Manhattan network

DFG 1183 ORGANIC COMPUTING 14

SRA U

ISE

Conclusion

Extension of the OTC architecture

- *Traffic-responsive* Progressive Signal Systems
- Decentralised operation
- Promising results for test networks

Remainder of Phase II

- Refinement and further evalution of presented approach
- Development of hierarchical architecture

Recent publications

	H. Prothmann, F. Rochner, S. Tomforde, J. Branke, C. Müller-Schloer, and H. Schmeck. Organic control of traffic lights. In <i>Proc. of the 5th International Conference on Autonomic and Trusted Computing (ATC-08)</i> , volume 5060 of LNCS, pages 219–233. Springer, 2008. <i>ATC08 BEST PAPER AWARD</i>
2008	S. Tomforde, H. Prothmann, F. Rochner, J. Branke, J. Hähner, C. Müller-Schloer, and H. Schmeck. Decentralised progressive signal systems for organic traffic control. In <i>Proc. of the 2nd IEEE International</i> <i>Conference on Self-Adaption and Self-Organization (SASO 2008)</i> , 2008. Accepted for publication.
·	U. Richter, H. Prothmann, and H. Schmeck. Improving XCS performance by distribution. In <i>Proc. of the 7th International Conference on Simulated Evolution And Learning (SEAL'08)</i> , 2008. Accepted for publication.
	J. Branke, P. Goldate, and H. Prothmann. Actuated traffic signal optimization using evolutionary algorithms. In Proc. of the 6th European Congress and Exhibition on Intelligent Transport Systems and Services (ITS07),

2007

2007.

H. Schmeck. Optimierungstechniken des Organic Computing in der Verkehrstechnik. In *Informatik bewegt! Informationstechnik in Verkehr und Logistik*, pages 11-38. Fraunhofer-IRB-Verlag, 2007.

F. Rochner, H. Prothmann, J. Branke, C. Müller-Schloer, and H. Schmeck. An organic architecture for traffic light controllers. In *Informatik 2006 – Informatik für Menschen*, volume P-93 of LNI, pages 120-127. Köllen Verlag, 2006.

J. Branke, M. Mnif, C. Müller-Schloer, H. Prothmann, U. Richter, F. Rochner, and H. Schmeck. Organic Computing – Addressing complexity by controlled self-organization. In *Post-Conference Proce. of the 2nd International Symposium on Leveraging Applications of Formal Methods, Verification and Validation (ISoLA* 2006), pages 185–191. IEEE, 2006.

