Self-Organization from the Perspective of a Physicist

Udo Erdmann

(f helmholtz
| GEMEINSCHAFT

Rayleigh-Bénard Convection

(f HELMHOLTZ
| GEMEINSCHAFT

(a)

(b)

Bénard-Marangoni Effect

HELMHOLTZ
| GEMEINSCHAFT

Belousov-Zhabotinsky-Reaktion

Jan Krieger

PAGE 5

Belousov-Zhabotinsky-Reaktion

Group of "Dissipative Structures", H. Engel (TU Berlin)

| GEMEINSCHAFT

CO on Platinum Surfaces

experiment

simulation

A. v. Oertzen, H.-H. Rotermund, A. S. Mikahilov, FHI Berlin

Selforganization

- Open system Non-equilibrium
- Non-linearity and/or interacting species with different relaxation time scales
- Fluctuations
- Non-linear sytems offer more than one solution which can be obtained.
- Fluctuations allow the system to switch between the different possible solutions

Swarming, self-organized?

As we know from a lot of species, individuals tend to form groups.
Within these groups coherent motion of the group itself can be observed.

- Wildebeest live in herds
- Fish form schools
- Birds fly in flocks
- Locusts move in large swarms

Wildebeests

Plate 3. Wildebeest massing in a grazing front on the Serengeti Plains. March 1973.

Buffalos

Swarming?

As we know from a lot of species, individuals tend to form groups.
Within these groups coherent motion of the group itself can be observed.

- Wildebeest live in herds
- Fish form schools
- Birds fly in flocks
- Locusts move in large swarms

Anchovis Trying to Survive

Swarming?

As we know from a lot of species, individuals tend to form groups.
Within these groups coherent motion of the group itself can be observed.

- Wildebeest live in herds
- Fish form schools
- Birds fly in flocks
- Locusts move in large swarms

Flocks of Birds

HELMHOLTZ
| GEMEINSCHAFT

Swarming of Army Ants

A swarm of Army ants runs in a circle for five days.

(T. C. Schneirla, 1948)
A. Aronson, E. Tobach, J. S. Rosenblatt \& D. S. Lehrmann (Eds.): Selected Writings of Theodore C. Schneirla, Freeman \& Co., San Francisco (1972)

Collective Motion in Bacterial Colonies

FIG. 2. Bright field micrograph of a single rotating droplet with
magnification of $500 \times$ (a) and the corresponding velocity field a magnification of $500 \times$ (a) and the corresponding velocity field obtained by digitizing our video recordings (b).

Formation of complex bacterial colonies via self-generated vortices

FIG. 9. In the same model as shown in Fig. 8, but for a different value of the parameter μ (providing stronger velocity-velocity interaction, $\mu=0.3$), rotating rings develop in the simulations (a). This phenomenon was also reported in Ref. [19] (b).

FIG. 8. A typical result of the chemoregulated model for vortex formation. The positive feedback of the chemoattractant breaks the originally homogeneous density and aggregates with high density are created. The flow field is represented by arrows of a magnitude proportional with the local velocity. The inset shows the concentration distribution of the chemoattractant $(\mu=0.1, \nu=0.1, F=0.3$, $\left.\kappa=0.1, \chi_{A}=0.2, \eta=0.2, D_{A}=0.1, \lambda_{A}=0.01\right)$.
tions bac ollective cteria in ecific to 1 of univ the hyd sria. The roductio spulation [S1063.
$5.60+w$
/r helmholtz
| GEMEINSCHAFT

Dictyostelium discoidium Slime Molds

Daphnia within a Light Shaft

Anke Ordemann, Frank Moss:
Center for Neurodynamics, UMSL

J. Rudi Strickler, Akira Okubo

Basic Observed Motions

-Directed motion

-Rotational motion

-Amoebae like motion

A. Okubo \& S. A. Levin: Diffusion and Ecological Problems, Springer, New York, 2nd edition (2003)

Question and Answer

Question

What are the basic features
which have to be put into a model to resemble coherent motion as they can be observed in nature and society

Answer
One needs a model:
-which stationary state is far from equilibrium,
-where interaction of the individuals leads to a specific confinement and
-fluctuating forces

Vicsek's $X Y$-Model

- N locally aligning particles with noise and constant velocity v_{0}

$$
\vartheta_{\mathrm{i}}(t+\Delta t)=\langle\vartheta(i)\rangle_{\mathrm{S}(\mathrm{i})}+\xi
$$

- Periodic boundary conditions
- Parameters: density of particles and amplitude of noise

(a) initial random setting
(b) low density, low noise
(c) high density, high noise
(d) high density, low noise

Novel Type of Phase Transition

Modelling of Fishschools

Parrish, Viscido and Grünbaum, Biological Bulletin 202, 296-305 (2002)

Modelling of Fishschools

$$
\begin{aligned}
\mathbf{x}_{\mathbf{i}}(t+1) & =\mathbf{x}_{\mathbf{i}}(t)+\mathbf{v}_{\mathbf{i}}(t) \Delta t \\
\mathbf{v}_{\mathbf{i}}(t) & =\left\{v_{\mathbf{i}}(t), \theta_{\mathbf{i}}(t)\right\} \\
\theta_{\mathbf{i}}(t) & =\theta_{\mathbf{i}}(t-1)+\phi_{\mathbf{i}}(t)
\end{aligned}
$$

Similiar to Viscek's model + some rules for the update of the turning angle ϕ_{i}

Modelling of Fishschools

Turning Angle Distribution

$$
p\left(\boldsymbol{\phi}_{i}\right)=\frac{1}{\boldsymbol{\sigma} \sqrt{2 \pi}} \exp \left(-\frac{\left(\boldsymbol{\phi}_{i}-\boldsymbol{\alpha}_{i}\right)^{2}}{2 \boldsymbol{\sigma}^{2}}\right)
$$

Reaction field around an individual, consisting of repulsive-orientation, parallel-orientation, and attractive orientation fields whose radii are R_{r}, R_{p}, and R_{a}, respectively. The region beyond the attractive-orientation field is outside the detection region of an individual, and a blind region exists behind an individual because of its body.

Deterministic turning angle α_{i} (to avoid the predator)

$$
\begin{gathered}
\boldsymbol{\alpha}_{i}=\Varangle\left(\mathbf{a}_{i}, \boldsymbol{v}_{i}(t)\right), \\
\mathbf{a}_{i}=c \mathbf{a}_{i, \text { school }}+(1-c) \mathbf{a}_{i, \text { predator }} \quad(0 \leqslant c \leqslant 1)
\end{gathered}
$$

Modelling of Fishschools

(a)

(b)

(c)

Behavioral rules for interaction with other individuals; (a) approach, (b) parallel-orientation, (c) repulsion. These rules were first proposed by Aoki (1982) and Huth \& Wissel (1992), together with the random direction at which an individual turns to search for other individuals.

Modelling of Fishschools

Modelling of Fishschools

Parrish \& Edelstein-Keshet, Science 284, 99-101 (1999)

(Second) Newton's Law

Make it as simple as it is!

$\underset{\text { force }}{F}=\operatorname{mass}_{\text {mass }} \times \quad \underset{\text { accelaration }}{a}$

$$
\begin{aligned}
& \text { change of velocity per unit time } \\
& \mathrm{a}=\frac{\phi \mathrm{V}}{\phi \mathrm{t}}=\frac{1}{\phi \mathrm{t}}\left(\mathrm{~V}_{\mathrm{t}+\phi \mathrm{t}}-\mathrm{V}_{\mathrm{t}}\right) \quad \phi \stackrel{\mathrm{t}!}{=} 0 \frac{\mathrm{dV}}{\mathrm{~d} t}=\dot{\mathrm{V}}
\end{aligned}
$$

$$
\mathrm{V}=\frac{\phi \mathrm{S}}{\phi \mathrm{t}}=\frac{1}{\phi \mathrm{t}}\left(\mathrm{~S}_{\mathrm{t}}+\phi \mathrm{t}-\mathrm{S}_{\mathrm{t}}\right) \quad \stackrel{\phi \mathrm{t}!}{=} 0 \frac{\mathrm{ds}}{\mathrm{~d} t}=\dot{\mathrm{s}}
$$

From now on the distance \boldsymbol{s} is denoted by the change of the space coordinates \boldsymbol{x} (1D) or \boldsymbol{r} (3D)

Active Brownian Particles

$$
\begin{aligned}
m \mathbf{a} & =\mathrm{F}=\mathbf{F}_{\text {dep ot }}+\mathbf{F}_{\text {interaction }}+\mathbf{F}_{\circ} \text { uctuation } \\
\dot{\boldsymbol{r}} & =\boldsymbol{v}, \quad m \dot{\boldsymbol{v}}=-\gamma(v) v+\boldsymbol{F}(\boldsymbol{r})+\sqrt{2 D} \boldsymbol{\xi}(t)
\end{aligned}
$$

- Friction term (nonlinear dependance on v)
- Confinement (external boundary conditions or interaction with other particles)
- Random forces (Gaussian white noise)

Numerical Implementation

$$
\begin{aligned}
\dot{x}= & \frac{\mathrm{d} x}{\mathrm{~d} t} \rightarrow \frac{\Delta x}{\Delta t} \\
\dot{v}= & \frac{\mathrm{d} v}{\mathrm{~d} t} \rightarrow \frac{\Delta v}{\Delta t} \\
x(t+\Delta t)= & x(t)+v(t) \Delta t \\
v(t+\Delta t)= & v(t)+{ }_{\mathrm{p}}[\gamma(v(t)) v(t)+F(x(t))] \Delta t \\
& +\xi(t) \frac{\Delta t)}{\Delta t)}
\end{aligned}
$$

Depot Model

Particle with mass m, position \boldsymbol{r}, velocity \boldsymbol{v}, self-propelling force connected to energy storage depot $e(t)$; velocity dependent friction $\gamma(v)$

External parabolic potential $U(\boldsymbol{r})$ and noise $\xi(t)$

$$
\begin{aligned}
\dot{\mathbf{r}} & =\mathbf{v} \\
m \dot{\mathrm{v}} & =d_{2} e(t) \mathbf{v}-\gamma_{0} \mathbf{v}-\nabla U+»(t)
\end{aligned}
$$

Energy depot: space-dependent take-up $q(r)$, internal dissipation $c e(t)$, conversion of internal energy into kinetic energy $d_{2} e(t) v^{2}$

$$
\dot{e}(t)=q(\mathbf{r})-c e(t)-d_{2} e(t) \mathbf{v}^{2}
$$

Energy depot analysis (for $q(r)=q_{0}$):

$$
\gamma(\mathrm{v})=\gamma_{0}-\frac{d_{2} q_{0}}{c_{0}+d_{2} \mathrm{v}^{2}}
$$

Negative Friction

$$
\gamma(\boldsymbol{v})=\gamma_{0}-\frac{q_{0} d_{2}}{c+d_{2} \boldsymbol{v}^{2}}
$$

Ebeling et. al, Biosystems 49, 17-29 (1999)
| GEMEINSCHAFT

Depot model: $\gamma(\boldsymbol{v})=\gamma_{0}-\frac{q_{0} d_{2}}{c+d_{2} \boldsymbol{v}^{2}}$

Stationary probabilty for the velocitiy of a particle

$$
P_{0}(\boldsymbol{v})=C\left(1+\frac{d_{2}}{c} \boldsymbol{v}^{2}\right)^{\frac{q_{0}}{2 D}} \exp \left[-\frac{\gamma_{0}}{2 D} \boldsymbol{v}^{2}\right]
$$

Active Particles in an External Potential

weak noise
strong noise

Directly Interacting Particles

Herbert Levine, UCSD

Erdmann et al., Physical Review E 65, 061106 (2002)
| GEMEINSCHAFT

Ebeling and Erdmann, Complexity 8(4), 23-30 (2003)

Harmonic Interaction

$$
m \ddot{\boldsymbol{r}}_{i}=\left(\gamma_{1}-\gamma_{2} \dot{\boldsymbol{r}}_{i}^{2}\right) \dot{\boldsymbol{r}}-\frac{a}{N} \sum_{j=1}^{N}\left(r_{i}-r_{j}\right)+\sqrt{2 D} \boldsymbol{\xi}_{i}(t)
$$

Translational mode

0
0
-
0
0
0
0
0

Center of Mass

Erdmann et al., Physical Review E 71, 051904 (2005)

Stability of the Translational Mode

Active Brownian Particles with Chemical Interaction

$$
A \xrightarrow{\mathrm{q}} A+B
$$

Cluster formation

$D_{\mathrm{c}}=0.001$

$D_{\mathrm{c}}=0.1$

Trajectories of the Particles in a Cluster

HELMHOLTZ
| GEMEINSCHAFT

APB with fluid like interaction

$\dot{\mathrm{v}}_{\mathrm{i}}=\left(\gamma_{1}-\gamma_{2} \mathrm{v}_{\mathrm{i}}^{2}\right) \mathrm{v}_{\mathrm{i}}+\beta(c) \nabla c$

$$
+\chi \mathbf{v}_{\mathbf{F}}+(2 D)^{\frac{1}{2}}>_{\mathbf{i}}(t)
$$

χ velocity-velocity interaction strength
v_F local velocity field

$$
\mathrm{V}_{\mathrm{F}}=\langle v\rangle_{2}={\frac{1}{N_{2}}}^{\mathrm{X}} \mathrm{~V}_{\mathrm{j} \in \mathrm{i}} \delta_{\mathrm{r}_{\mathrm{j}} 2^{2}}
$$

Chemical Interaction + Velocity Coupling

$$
\chi=1
$$

Chemical Interaction + Velocity Coupling

$$
\chi=3
$$

Chemical Interaction + Velocity Coupling

timestep $=1$

timestep $=1$

$$
\chi=5
$$

Complex χ-dependent Dynamics

(f HELMHOLTZ
|GEMEINSCHAFT

Chemical Interaction + Velocity Coupling

Take-home Message

- Living far from equlibrium and
- interacting and/or
- behave non-linear
lets us live self-organized more than emergent, though we have emerged already on this planet ;-)

Principle of Adiabatic Elimination

$$
\begin{aligned}
& \dot{q}_{1}=-\zeta_{1} q_{1}-a q_{1} q_{2} \\
& \dot{q}_{2}=-\zeta_{2} q_{2}+b q_{1}^{2}
\end{aligned}
$$

$\zeta_{2} \gg \zeta_{1}$
time scale separation

Active Brownian Particles in a Liquid

/ F HELMHOLTZ
| GEMEINSCHAFT

Hydrodynamical Interaction

local velocity induced by the

$$
\begin{equation*}
\boldsymbol{v}_{\mathrm{F}}\left(\boldsymbol{r}_{i}\right)=\sum_{j} \frac{R}{r_{i j}}\left[\delta+\frac{\boldsymbol{r}_{i j} \otimes \boldsymbol{r}_{i j}}{r_{i j}^{2}}\right] \tag{0}
\end{equation*}
$$

surrounding particles in a laminar regime

$$
\boldsymbol{v}_{\mathrm{F}}\left(\boldsymbol{r}_{i}\right)=\sum_{j} \frac{R}{r_{i j}} \boldsymbol{v}_{j}+\sum_{j} \frac{R\left(\boldsymbol{r}_{i j} \cdot \boldsymbol{v}_{j}\right)}{r_{i j}^{3}} \boldsymbol{r}_{i j} ; \quad r_{i j}>R
$$

The Langevin equation for a single particle becomes:

$$
\dot{\boldsymbol{v}}_{i}=-\gamma\left(\boldsymbol{v}_{i}\right) \boldsymbol{v}_{i}+\kappa_{\mathrm{F}} \boldsymbol{v}_{\mathrm{F}}\left(\boldsymbol{r}_{i}\right)+\boldsymbol{F}\left(\boldsymbol{r}_{i}\right)+\sqrt{2 D} \boldsymbol{\xi}_{i}(t) .
$$

Fokker-Planck Equation

If the dynamics of a single particle is:

$$
\dot{\boldsymbol{r}}=\boldsymbol{v}, \quad \dot{\boldsymbol{v}}=-\gamma(v) v+\boldsymbol{F}(\boldsymbol{r})+\sqrt{2 D} \boldsymbol{\xi}(t)
$$

The corresponding Fokker-Planck equation is for the PDF becomes:

$$
\frac{\partial P}{\partial t}=-\boldsymbol{v} \frac{\partial P}{\partial \boldsymbol{r}}-\boldsymbol{F}(\boldsymbol{r}) \frac{\partial P}{\partial \boldsymbol{v}}+\frac{\partial}{\partial \boldsymbol{v}}\left\{\gamma(v) v P+D \frac{\partial P}{\partial \boldsymbol{v}}\right\}
$$

