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Rayleigh-Bénard Convection
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Bénard-Marangoni Effect
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Belousov-Zhabotinsky-Reaktion

light-sensitive reaction

Jan Krieger
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Belousov-Zhabotinsky-Reaktion

Group of „Dissipative Structures“, 
H. Engel (TU Berlin)
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CO on Platinum Surfaces

A. v. Oertzen, H.-H. Rotermund, A. S. 
Mikahilov, FHI Berlin

experiment

simulation
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Selforganization

Open system
Non-equilibrium

Non-linearity and/or
interacting species with
different relaxation time 
scales

Fluctuations

Non-linear sytems offer more
than one solution which can
be obtained.

Fluctuations allow the system
to switch between the
different possible solutions
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Swarming, self-organized?

As we know from a lot of species, individuals tend to 
form groups.
Within these groups coherent motion of the group itself
can be observed.

Wildebeest live in herds
Fish form schools
Birds fly in flocks
Locusts move in large swarms
...
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Wildebeests
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Buffalos
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Anchovis Trying to Survive
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Flocks of Birds
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Swarming of Army Ants

A. Aronson, E. Tobach, J. S. Rosenblatt & D. S. Lehrmann (Eds.): Selected Writings of Theodore 
C. Schneirla, Freeman & Co., San Francisco (1972)

A swarm of Army 
ants runs in a circle
for five days.
(T. C. Schneirla, 1948)
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Collective Motion in Bacterial Colonies
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Dictyostelium discoidium Slime Molds

Herbert Levine, UCSD
http://www.dictybase.org

http://www.dictybase.org
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Anke Ordemann, Frank Moss: 
Center for Neurodynamics, UMSL

Daphnia within a Light Shaft

J. Rudi Strickler, Akira Okubo
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Basic Observed Motions

Directed motion

Rotational motion

Amoebae like motion

A. Okubo & S. A. Levin: Diffusion and Ecological Problems, Springer, New York, 2nd edition (2003)
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Question and Answer

Question

What are the basic features
which have to be put into a 
model to resemble coherent
motion as they can be
observed in nature and society

Answer

One needs a model:

which stationary state is far 
from equilibrium,

where interaction of the
individuals leads to a specific
confinement and

fluctuating forces
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Vicsek‘s XY-Model

• N locally aligning particles with
noise and constant velocity v0

• Periodic boundary conditions

• Parameters: density of particles and 
amplitude of noise

(a) initial random setting

(b) low density, low noise

(c) high density, high noise

(d) high density, low noise

Vicsek et al., Phys. Rev. Lett. 75, 1226-1229 (1995)

ϑi (t +∆t) = hϑ(i)iS(i ) + ξ

ξ =
£
− ´

2 ,
´
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Vicsek et al., Phys. Rev. Lett. 75, 1226-1229 (1995)

Novel Type of Phase Transition

average velocity

Strength of 
fluctuatuons
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Modelling of Fishschools

Parrish, Viscido and Grünbaum, Biological Bulletin 202, 296-305 (2002)
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Modelling of Fishschools

Inada and Kawachi, Journal of theoretical Biology 214, 371-387 (2002)

x i (t +1) = x i (t) + v i (t)∆t

v i (t) = {v i (t), θ i (t)}

θ i (t) = θ i (t − 1) + φi (t)

Similiar to Viscek‘s
model + some rules for
the update of the turning
angle φi
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Modelling of Fishschools

Turning Angle Distribution

Inada and Kawachi, Journal of theoretical Biology 214, 371-387 (2002)

Reaction field around an individual, consisting
of repulsive-orientation, parallel-orientation, and 
attractive orientation fields whose radii are Rr , 
Rp, and Ra, respectively. The region beyond the
attractive-orientation field is outside the
detection region of an individual, and a blind 
region exists behind an individual because of its
body. 

Deterministic turning angle αi (to avoid the predator)
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Modelling of Fishschools

Inada and Kawachi, Journal of theoretical Biology 214, 371-387 (2002)

Behavioral rules for interaction with other individuals; (a) approach, (b) 
parallel-orientation, (c) repulsion. These rules were first proposed by Aoki
(1982) and Huth & Wissel (1992), together with the random direction at which
an individual turns to search for other individuals.



PAGE 28

Inada & Kawachi, J. theor. Biol. 214, 371-387 (2002)

Modelling of Fishschools
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Modelling of Fishschools

Parrish & Edelstein-Keshet, Science 284, 99-101 (1999)
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(Second) Newton‘s Law

change of velocity per unit time

F
force

= m
m ass

× a
accelarat ion

traveled distance per unit time

From now on the distance s is denoted by the change of the space
coordinates x (1D) or r (3D)

a = ¢ v
¢ t =

1
¢ t (vt + ¢ t − vt )

¢ t ! 0=
dv
dt
= v̇

v = ¢ s
¢ t =

1
¢ t (st + ¢ t − st )

¢ t ! 0
=

ds
dt
= ṡ

Make it as simple as it is!



PAGE 31

Active Brownian Particles

FrictionFriction termterm (nonlinear dependance on v)
ConfinementConfinement (external boundary conditions or interaction with
other particles)
RandomRandom forcesforces (Gaussian white noise)

m

ma = F = F dep ot + F int eract ion + F ° uct uat ion
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Numerical Implementation

ẋ =
dx

dt
→
∆x

∆t

v̇ =
dv

dt
→
∆v

∆t
x(t +∆t) = x(t) + v(t)∆t

v(t +∆t) = v(t) + [γ(v(t))v(t) + F(x(t))]∆t

+ξ(t)
p
∆t)
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Depot Model

Particle with mass m, position r, velocity v, self-propelling force  connected to 
energy storage depot e(t); velocity dependent friction γ(v) 

External parabolic potential U(r) and noise ξ(t)

Energy depot: space-dependent take-up q(r), internal dissipation ce(t), 
conversion of internal energy into kinetic energy d2 e(t) v2

Energy depot analysis (for q(r) = q0 ):  

Ebeling et al., Biosystems 49, 17-29 (1999)

ė(t) = q(r )− ce(t)− d2e(t)v2

γ(v) = γ0−
d2q0

c0+ d2v2

ṙ = v
mv̇ = d2e(t)v − γ0v −∇U + »(t)
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Negative Friction
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Stationary probabilty for the velocitiy of a particle
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weak noise strong noise

Erdmann et al., European Physical Journal B 15, 105-113 (2000)

Active Particles in an 
External Potential
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Directly Interacting Particles

Erdmann et al., Physical Review E 65, 061106 (2002)

Herbert Levine, UCSD
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Ebeling and Erdmann, Complexity 8(4), 23-30 (2003)
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Harmonic Interaction
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Erdmann et al., Physical Review E 71, 051904 (2005)
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Erdmann et al., Physical Review E 71, 051904 (2005)
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Stability of the Translational Mode

Erdmann et al., Physical Review E 71, 051904 (2005)
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Erdmann et al., Physical Review E 71, 051904 (2005)
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Active Brownian Particles with Chemical 
Interaction

A
q
−→ A+B

ṙ i = v i

mv̇ i =
¡
γ1− γ2v2

i
¢

| { z }
¡ ° (v)

v i + β(c)∇c| { z }
chem ot axis

+ (2D)
1
2 »i (t)| { z }

gaussian noise

ċ =
q

N

NX

i = 1

δ(r − r i )

| { z }
pro duct ion

− kc| { z}
decay

+ Dc∆c| { z }
di®usion
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Dc = 0.001 Dc = 0.1

Cluster formation
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Trajectories of the Particles in a Cluster
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APB with fluid like interaction

χ velocity-velocity interaction strength

v_F local velocity field

vF = hvi² =
1

N²

X

j 6= i

v j δr j 2 ²

v̇ i = (γ1 − γ2v2
i )v i + β(c)∇c

+χvF + (2D)
1
2 »i (t)



PAGE 47

Chemical Interaction + Velocity Coupling

χ=1
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Chemical Interaction + Velocity Coupling

χ=3
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χ=5

Chemical Interaction + Velocity Coupling
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Complex χ-dependent Dynamics
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Chemical Interaction + Velocity Coupling
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Take-home Message

Living far from equlibrium and
interacting and/or
behave non-linear

lets us live self-organized more than emergent, though
we have emerged already on this planet ;-)



PAGE 53

q̇1 = −ζ1q1− aq1q2

q̇2 = −ζ2q2+ bq2
1

with ζ2 À ζ1

time scale separation

q̇2 = 0 q2 ≈ 1
° 2
bq2

1

q̇1 = −ζ1q1 −
ab

ζ2
q3

1

Principle of Adiabatic Elimination
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Active Brownian Particles in a Liquid
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Hydrodynamical Interaction

local velocity
induced by the
surrounding particles
in a laminar regime

o
r

The Langevin equation for a single particle becomes:

Erdmann and Ebeling, Fluctuation and Noise Letters 3(2), L145-L154 (2003)
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If the dynamics of a single particle is:

The corresponding Fokker-Planck equation is for the PDF becomes:

Fokker-Planck Equation


