Self-organisation and Emergence in Multi-Agent Systems

Giovanna Di Marzo Serugendo <u>dimarzo@dcs.bbk.ac.uk</u>

Birkbeck College, University of London <u>http://www.dcs.bbk.ac.uk/~dimarzo</u>

Outline

• Context

- ESOA Workshops
- AgentLink Self-Org TFG
- Definitions
 - Self-organisation / Emergence
- Overview
 - Engineering:
 - Agents / Self-organising Mechanisms / Middleware Infrastructure / Methods and tools
- Applications
 - Manufacturing control (ants)
 - Region detection (spiders)
 - P2P protocols (gossip)
 - Co-field middleware infrastructure (force fields)
 - Adelfe method (cooperation)

Context

- Engineering Self-Organising Applications (ESOA workshops)
 - 2003 to 2006
 - Co-located with AAMAS
 - Papers
 - Applications
 - MANETS, manufacturing control, traffic control, ...
 - Self-organising mechanisms
 - Ants-based, immune system, ...
 - Methodologies/Software Engineering
 - Middleware, methods, design patterns, ...

Context

- Agentlink Technical Forum Group on Self-Organisation in MAS (Self-Org TFG)
 - 4 meetings between 2004 and 2006
 - Continues once per year
 - Since 2006, Co-located with EUMAS workshop
 - Goal:
 - Enhance Interdisciplinary links
 - Work on concepts / definitions
 - Produce a book
 - Achievements
 - Some operational definitions (!) / characteristics
 - Series of papers and reports
 - Book proposal
 - <u>http://www.irit.fr/TFGSO</u>

Self-Organisation

• Self-organisation in Engineered systems

"Self-organisation is the process enabling a system to change its organisation in case of environmental changes without explicit external command ."

"Strong self-organising systems are those systems where there is reorganisation with no explicit central control, either internal or external."

"Weak self-organising systems are those systems where, from an internal point of view, there is re-organisation under an internal central control or planning."

– Dimarzo et al. (2005)

Emergent Phenomenon

• Emergent phenomenon in engineered systems

"Emergent phenomenon is a functionality, structure/organisation, characteristics or property of a system not explicitly coded in the local components, visible by an observer at the macro-level but not necessarily at the micro-level."

"Weak emergent phenomena are those phenomena we can define as being the result of a (complex) operational function F(components)."

"Strong emergent phenomena are those phenomena we cannot define as the result of an operational function or F is 'analytic'."

- Lisbon Self-Org TFG Meeting - Draft - 2006

Overall Picture

Engineering Overview

Engineering

- Software Agents
 - Low level active components
- Self-Organising Mechanisms
 - Interactions / coordination among agents
- Middleware Infrastructures
 - Support for
 - Agent execution and interactions
 - Self-organising Mechanisms
- Methods/Methodologies and tools

- Software components
 - Autonomous actions
 - Situated in an environment
 - Sensors / Actuators
 - Social behaviour
 - Interactions / coordination
 - Intelligent / mobile
- Interest of agents for self-organisation
 - Naturally play the role of the individual "building blocks" in a selforganising system
 - Agents can be ...
 - ... ants
 - ... services
 - ... peers / nodes
 - ... traffic lights
 - ... cars

Self-Organising Mechanisms

Metaphor	Description	Applications
Stigmergy	Ants	Manufacturing Control / MANETs
		Decentralised Car Traffic Control
	Spiders	Region Detection
	Bees	Cultural Heritage
Social Human Behaviour	Trust and Reputation	Security / Access Control
	Gossip	P2P Protocols / Overlay Networks
	Tag-based	Specialisation and P2P Protocols
Biological Systems (cells)	Immune System	Detection Intrusion and Response
Learning	Reinforcement Learning	Decentralised Traffic Light Control
Cooperation	AMAS	Flood forecasting / Robots simulations
	DIET Platform	Lookup system for P2P networks
Architecture based	Holons	Enterprise Management
	Metadata Self-organising Architectures	Self-reconfiguration
		Autonomic Computing Ambient Intelligence

Middleware Infrastructures

• Coordination Spaces

- "Blackboard"
 - Repository of tuples (n-uples) accessed concurrently
 - Producers and consumers of tuples
 - Associative memory
 - Retrieval of tuples based on "pattern matching"

• Swarm-Based Infrastructures

- SwarmLinda [Tolksdorf 03]
- AntHill [Babaoglu 02]

• Field-Based Infrastructures

- Co-Fields [Mamei 02]
- TOTA [Mamei 03]

Methodologies

- Adelfe (AMAS) [Gleizes]
 - Methodology based on the AMAS cooperative theory among agents
- Design Patterns [DeWolf]
 - Decentralised coordination patterns as design patterns
 - Gradient field / Market-Based Control
- Self-Organising Architectures
 - Meta-models of architectures (configuration)
 - Constraints of reconfiguration and interactions

Applications

- Manufacturing control (ants)
- Region detection (spiders)
- P2P protocols (gossip)
- Co-field middleware infrastructure (force fields)
- Adelfe method (cooperation)

Manufacturing Control

- Metaphor: Ant foraging
- PROSA Architecture [Hadeli 03]
- Agents:
 - Orders agents (logistics for managing products), products agents (processes tasks), resources agents (raw material, machines, etc)
- Mapping of control and production system into agents
 - Actual production system is reflected into an agents structure
 - Each resource/product/order has a corresponding resource/product/order agent (local information only)
 - Links among agents (e.g. order agents know about location of resources agents and products agents necessary to complete order)
 - Agents creates ant-agents (mobile agents) that explore the cyber production system and deposit/sense pheromone

Manufacturing Control

- Ant-agents behaviour
 - Feasibility information ants
 - Information related to the resource locations (availability, etc.)
 - Exploring ants
 - Order agents create several ants each exploring a way of realising the order (processing times, etc. gives back a report with followed route)
 - Intention propagation ants
 - Order agents create ants that propagate information about the order's intentions (chosen best route). Ant has a fixed route, and makes bookings.
- Manufacturing control
 - Obtained from the choices made by order agents
 - On the basis of the above information
 - Actually executed by resources agents

Manufacturing Control

- Exploring Ants (EA) ullet
 - Tries to find solutions
 - Searching for solutions is guided by local pheromones
 - Reports result of solution to the corresponding Order Agent

Region Detection

- Metaphor: Social Spiders
 - Few species of spiders are "social"
 - Sharing of web
 - Collaboration (preys, web weaving)
 - Stigmergy based on silk
 - Spiders follow silk or move to points where silk is fixed

Region Detection

Region detection

- Region detection (grey levels) [Bourjot 03]
 - Partition of image into subsets of separate objects
 - Determination of sets of connected pixels (regions)
- Idea:
 - Webs weaving determines the region

• Algorithm

- Spider has to detect a given region (grey level)
 - Several spiders explore image and fix silk on relevant pixels
 - Silk attraction
 - Resulting web is fixed on "interesting" pixels

Region Detection

Region Detection

P2P Protocols

- Metaphor: Gossip
 - Light informal conversation for social occasions [WorldReference.com dictionary]
 - Periodic exchange and update of information among members of a group
 - Allows: aggregation of global information inside a population, social learning
 - Parameters: neighbourhood, level of precision of information
- T-Man Algorithm [Jelasity 05].
 - Generic protocol based on gossip communication model
 - Goal: network topology management problem
 - Nodes randomly connected
 - Re-organisation of connections to produce desirable topology
 - Nodes choose their behaviour
 - Nodes become neighbours based on information such as: geographic position, content, storage capacity

P2P Protocols

- Principle
 - Nodes maintain local view (profile) of neighbours
 - Ranking function defines the target topology (e.g. distance)
 - Serves for reorganising the set of neighbours
 - Based on "profile" of the nodes (e.g. number, useful info for topology)
 - Gossip message exchange
 - Choice of « closest » neighbour based on ranking function
 - Local exchange / combination of neighbours profile
 - Nodes become closer and closer
 - Allows adaptation of neighbours list
 - Re-organisation of the network topology
- Applications
 - Overlay networks supporting P2P systems
 - Maintenance or establishment of P2P topology
 - Sorting, Clustering of nodes, Distributed Hash table

Berlin, 15/02/07

P2P Protocols

- Co-Fields (Computational Fields) [Mamei 02]
- Principle Force Fields
 - Agents generate application-specific fields
 - Propagation of fields in environment according to field-specific laws
 - Composition of different fields (coordination field)
 - Agents follow field gradient (downhill / uphill)
 - Agents movements are driven by fields (no central control)
 - Coordination emerges from
 - Interrelated effects of agents following the fields
 - Dynamic fields reshaping due to agents movements
 - Composition of different fields at each point

• Co-Fields Modelling of Ants Foraging [Mamei 02]

- Two fields: Home and Food fields
 - Generated and spread by environment
- Ants follow home or food field
- Environment change fields according to ants movements
 - Wrinkling of fields where ants are located
 - Wrinkle = Abstraction for the pheromone
- Fields = channels
 - Food-fields: down to food
 - Home-fields: down to home
- Pheromone evaporation
 - Environment removes the wrinkle after elapsed time

- TOTA Tuples on the Air [Mamei 03]
 - Based on Coordination Space
 - Uncoupled adaptive interactions
 - Provides Context-awareness
 - Follows Co-Field principle
- TOTA System
 - Agents inject tuples in the system
 - Environment propagates and diffuses tuples in the system
 - Propagation follows a specified pattern or propagation rule
 - Agents locally sense the resulting fields
- Application Development
 - Inject tuples (content + propagation rule)
 - Query local tuples (pattern-matching)

Methodologies

- ADELFE Methodology
 - Guide + help designer
 - Determination of type of system
 - Based on AMAS Theory
 - Cooperative agents

Cooperative Agent

- Cooperative attitude of an agent
 - Local and autonomous
 - Independent of the global function of the system
 - Heuristic to move through state space in a right direction
- Definition of cooperation (see types of NCS)
 - All perceived signals must be understood without ambiguity
 - Received information is useful for the agent's reasoning
 - Reasoning leads to useful actions towards others agents

Cooperative Agent

- Cooperative Agents
 - Skills (what agent is able to do)
 - Knowledge about world (itself, other agents, environment)
 - Interaction language
 - Aptitude (reasoning)
 - Social attitude (cooperation)
- Cooperative agent fundamental activities:
 - Perceives, decides and acts in the world
 - If in a cooperative situation \rightarrow realises its function
 - If in an uncooperative situation (failure) → acts to come back in a cooperative state

ADELFE Methodology

- Requirements
 - Definition of the studied system
 - Environment model:
 - agents, context, environment
- Analysis
 - Identification of agents
 - Adequacy to AMAS theory
- Design
 - Agent model
 - Cooperative agent design
 - Non cooperative situation model
 - Cooperative and non cooperative interactions

ADELFE Methodology

- Non cooperative situation (NCS) model
 - Table of all NCS cases
 - For each agent:
 - Agent state, NCS description, conditions, actions
- Three kinds of NCS
 - Signal perceived from environment is not understood (or with ambiguity)
 - Perceived information does not lead to activity
 - Actions are not useful for environment

Emergent Programming

- Self-assembly of instructions [Georgé 2005]
- Instruction-Agents
 - Interactions among agents
 - Send / receive data (input/output)
- A Program
 - One organisation of the instruction-agents
- Final program
 - Obtained by successive re-organisations (adaptations)
- Example: 6 agents
 - + agent, * agents
 - 3 constant-agents (A=2, B=10, C=100)
 - Output-agent (provides feedback from outside)

Emergent Programming

- Non Cooperative Situations
 - Agent is missing a partner for one of his inputs
 - Solution
 - Contact agent with output values of corresponding type
 - Agent is informed that another agent is in a missing situation
 - Solution
 - Try to act as the missing agent
 - Contact another agent

• Feedback from environment

- Bigger (if highest value has to be produced) or
- Smaller (if lowest value has to be produced)

Emergent Programming

Engineering: Open Issues

- Considered systems
 - Open dynamic systems
 - Heterogeneous agents
 - Selfish or cooperative
- Issues
 - Interactions among:
 - Independently developed heterogeneous agents
 - Management of uncertainty
 - Design and development
 - Micro- / Macro-behaviour
 - Prediction of good/bad behaviour
 - Control

Additional Activities

- IEEE SASO Conference
 - http://projects.csail.mit.edu/saso2007
- Agentlink Technical Forum on Self-Organisation
 - http://www.agentlink.org/activities/al3-tf
- ACM Transactions on Autonomous Adaptive Systems
 - Inaugural issue: September 2006
 - <u>http://www.acm.org/pubs/taas</u>
- IEEE ETTC Organic Computing Task Force
 - http://www.neuroinformatik.ruhr-uni-bochum.de/PEOPLE/igel/oc.html

• Journals

- G. Di Marzo Serugendo, M.-P. Gleizes, A. Karageorgos. "Self-organisation and emergence in MAS: an overview", Informatica 30(1): 45-54, Slovene Society Informatika, Ljubljana, Slovenia, 2006.
- J.-P. Mano, C. Bourjot, G. Lopardo, P. Glize: Bio-inspired Mechanisms for Artificial Self-organised Systems, Informatica 30(1): 55-62, Slovene Society Informatika, Ljubljana, Slovenia, 2006.
- S. Hassas, G. Di Marzo Serugendo, A. Karageorgos, C. Castelfranchi. "Self-organising mechanisms from social and business/economics approaches", Informatica 30(1):63-71, Slovene Society Informatika, Ljubljana, Slovenia, 2006.
- C. Bernon, V. Chevrier, V. Hilaire, P. Marrow: Applications of Self-Organising Multi-Agent Systems: An Initial Framework for Comparison, Informatica 30(1): 73-82, Slovene Society Informatika, Ljubljana, Slovenia, 2006.
- G. Di Marzo Serugendo, M.-P. Gleizes, A. Karageorgos. "Self-Organisation in MAS", Knowledge Engineering Review 20(2):165-189, Cambridge University Press, 2005.

Berlin, 15/02/07

- Agentlink Newsletters
- G. Di Marzo Serugendo, Marie-Pierre Gleizes, Anthony Karageorgos "AgentLink Third Technical Forum Group Self-Organisation in Multi-Agent", AgentLink Newsletter, Issue 19, ISSN 1465-3842, pp. 25, November 2005. <u>http://www.agentlink.org/newsletter/19/AL-19.pdf</u>
- G. Di Marzo Serugendo, Marie-Pierre Gleizes, Anthony Karageorgos "AgentLink Second Technical Forum Group Self-Organisation in Multi-Agent", AgentLink Newsletter, Issue 17, ISSN 1465-3842, pp. 24-25, April 2005. <u>http://www.agentlink.org/newsletter/17/AL-17.pdf</u>
- G. Di Marzo Serugendo, Marie-Pierre Gleizes, Anthony Karageorgos "AgentLink First Technical Forum Group Self-Organisation in Multi-Agent Systems", AgentLink Newsletter, Issue 16, ISSN 1465-3842, pp. 23-24, December 2004. <u>http://www.agentlink.org/newsletter/16/AL-16h.pdf</u>

- Books
- Engineering Self-Organising Systems. S. Brueckner, S. Hassas, M. Jelasity, D. Yamins (Eds), LNAI 4335, Springer-Verlag, 2006.
- Engineering Self-Organising Systems. S. Brueckner, G. Di Marzo Serugendo, D. Hales, F. Zambonelli (Eds), LNAI 3910, Springer-Verlag, 2006.
- Engineering Self-Organising Systems Methodologies and Applications. S. Brueckner, G. Di Marzo Serugendo, A. Karageorgos, R. Nagpal (Eds), LNAI 3464, Springer-Verlag, June 2005.
- Engineering Self-Organising Systems: Nature-Inspired Approaches to Software Engineering. G. Di Marzo Serugendo, A. Karageorgos, O. F. Rana, F. Zambonelli (Eds), LNAI 2977, Springer-Verlag, 2004.

Adaptation Mechanisms

• Translation of Natural Mechanisms

- Stigmergy
 - Indirect communication through the environment
 - Digital pheromone
 - intensity, evaporation rate
 - Work-in-progress
 - mapping table: configurations action

– Gossiping

- Informal discussion among entities
- Local exchange of information (neighbours list)

Adaptation Mechanism

• Translation of Natural Mechanisms

- Trust
 - Human trust in peers
 - Trust values, calculation of risk, decision of actions
 - Updated on basis of positive/negative evidence
- Immune System
 - B cells + antibodies (detection and marking) T cells (destruction)
 - Bit strings (anomaly to detect)
 - Mobile agents (B and T cells)

Adaptation Mechanism

- Implementation of Artificial Mechanisms
 - Tags
 - Markings attached to individuals (agents) and observable by others
 - Agents change behaviour on basis of utility function value observed in peers (tag)
 - Metadata
 - Additional information (metadata) about functional / nonfunctional information / policies
 - Middleware processes metadata and components adapt to policies

- Principle Force Field Metaphor
 - Propagation of tuples is similar to propagation of fields in the physical space
 - Particle do not interact directly but locally perceive the fields
- Implementation
 - P2P Network of (Mobile) nodes (running TOTA middleware)
 - Nodes maintain a limited list of neighbours
 - TOTA-tuple = content + propagation rule + maintenance rule
 - Content = information
 - Propagation rule
 - How to diffuse the tuple
 - Scope (distance) of propagation of the tuple
 - Direction of propagation
 - How to change tuple content during propagation
 - Maintenance rule
 - How tuple reacts to changes in its environment
 - TOTA Middleware actively supports tuples propagation
 - If new node join the system, tuples are propagated to this new node (according to their propagation rules)

Field Tuple

C = (id, distance) P = (propagate everywhere, increment distance by one at each hop) M = (update structure upon network topology changes)

Agents follow gradients

Flocks of BirdsTraffic Management

Pheromone Tuple

C = (id, strength) P = (propagate in neighbourhood) M = (evaporate by diminishing strength periodically)

Agents sense pheromone

• Routing

Robots Simulation

• Robot

- Autonomous
- Resource transportation task
- Internal State guided
- Micro-level entity

• Environment

 \bullet

- Two rooms
- Narrow corridors separate the rooms
- \rightarrow spatial interference
- Emergence of a traffic direction [Picard, 2002, 2005]

