Self-organisation and Emergence in Multi-Agent Systems

Giovanna Di Marzo Serugendo
dimarzo@dcs.bbk.ac.uk

Birkbeck College, University of London
http://www.dcs.bbk.ac.uk/~dimarzo
Outline

• Context
 – ESOA Workshops
 – AgentLink Self-Org TFG

• Definitions
 – Self-organisation / Emergence

• Overview
 – Engineering:
 • Agents / Self-organising Mechanisms / Middleware Infrastructure / Methods and tools

• Applications
 – Manufacturing control (ants)
 – Region detection (spiders)
 – P2P protocols (gossip)
 – Co-field middleware infrastructure (force fields)
 – Adelfe method (cooperation)
Context

• Engineering Self-Organising Applications (ESOA workshops)
 – 2003 to 2006
 – Co-located with AAMAS
 – Papers
 • Applications
 – MANETS, manufacturing control, traffic control, …
 • Self-organising mechanisms
 – Ants-based, immune system, …
 • Methodologies/Software Engineering
 – Middleware, methods, design patterns, …
Context

• Agentlink Technical Forum Group on Self-Organisation in MAS (Self-Org TFG)
 – 4 meetings between 2004 and 2006
 – Continues once per year
 • Since 2006, Co-located with EUMAS workshop
 – Goal:
 • Enhance Interdisciplinary links
 • Work on concepts / definitions
 • Produce a book
 – Achievements
 • Some operational definitions (!) / characteristics
 • Series of papers and reports
 • Book proposal
 – http://www.irit.fr/TFGSO
Self-Organisation

• Self-organisation in Engineered systems

“Self-organisation is the process enabling a system to change its organisation in case of environmental changes without explicit external command.”

“Strong self-organising systems are those systems where there is re-organisation with no explicit central control, either internal or external.”

“Weak self-organising systems are those systems where, from an internal point of view, there is re-organisation under an internal central control or planning.”

– Dimarzo et al. (2005)
Emergent Phenomenon

- Emergent phenomenon in engineered systems

“Emergent phenomenon is a functionality, structure/organisation, characteristics or property of a system not explicitly coded in the local components, visible by an observer at the macro-level but not necessarily at the micro-level.”

“Weak emergent phenomena are those phenomena we can define as being the result of a (complex) operational function $F(\text{components})$.”

“Strong emergent phenomena are those phenomena we cannot define as the result of an operational function or F is ‘analytic’.”

- Lisbon Self-Org TFG Meeting – Draft - 2006
Overall Picture

Natural Self-organising Systems

Self-organisation Mechanisms

Artificial Self-organising Systems

Analysis and Simulation

Engineering Self-organising Systems
Engineering Overview

Self-organising Mechanisms

Agents

Middleware Infrastructure

Open Issues

Methodologies Tools
Engineering

• Software Agents
 – Low level active components

• Self-Organising Mechanisms
 – Interactions / coordination among agents

• Middleware Infrastructures
 – Support for
 • Agent execution and interactions
 • Self-organising Mechanisms

• Methods/Methodologies and tools
Agents

• Software components
 – **Autonomous** actions
 – Situated in an environment
 • Sensors / Actuators
 – Social behaviour
 – Interactions / coordination
 – Intelligent / mobile

• Interest of agents for self-organisation
 – Naturally play the role of the individual **“building blocks”** in a self-organising system
 • Agents can be ..
 – … ants
 – … services
 – … peers / nodes
 – … traffic lights
 – … cars
Self-Organising Mechanisms

<table>
<thead>
<tr>
<th>Metaphor</th>
<th>Description</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stigmergy</td>
<td>Ants</td>
<td>Manufacturing Control / MANETs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Decentralised Car Traffic Control</td>
</tr>
<tr>
<td></td>
<td>Spiders</td>
<td>Region Detection</td>
</tr>
<tr>
<td></td>
<td>Bees</td>
<td>Cultural Heritage</td>
</tr>
<tr>
<td>Social Human Behaviour</td>
<td>Trust and Reputation</td>
<td>Security / Access Control</td>
</tr>
<tr>
<td></td>
<td>Gossip</td>
<td>P2P Protocols / Overlay Networks</td>
</tr>
<tr>
<td></td>
<td>Tag-based</td>
<td>Specialisation and P2P Protocols</td>
</tr>
<tr>
<td>Biological Systems (cells)</td>
<td>Immune System</td>
<td>Detection Intrusion and Response</td>
</tr>
<tr>
<td>Learning</td>
<td>Reinforcement Learning</td>
<td>Decentralised Traffic Light Control</td>
</tr>
<tr>
<td>Cooperation</td>
<td>AMAS</td>
<td>Flood forecasting / Robots simulations</td>
</tr>
<tr>
<td></td>
<td>DIET Platform</td>
<td>Lookup system for P2P networks</td>
</tr>
<tr>
<td>Architecture based</td>
<td>Holons</td>
<td>Enterprise Management</td>
</tr>
<tr>
<td></td>
<td>Metadata</td>
<td>Self-reconfiguration</td>
</tr>
<tr>
<td></td>
<td>Self-organising</td>
<td>Autonomic Computing</td>
</tr>
<tr>
<td></td>
<td>Architectures</td>
<td>Ambient Intelligence</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Middleware Infrastructures

• Coordination Spaces
 – “Blackboard”
 • Repository of tuples (n-uples) accessed concurrently
 • Producers and consumers of tuples
 • Associative memory
 – Retrieval of tuples based on “pattern matching”

• Swarm-Based Infrastructures
 – SwarmLinda [Tolksdorf 03]
 – AntHill [Babaoglu 02]

• Field-Based Infrastructures
 – Co-Fields [Mamei 02]
 – TOTA [Mamei 03]
Methodologies

• Adelfe (AMAS) [Gleizes]
 – Methodology based on the AMAS *cooperative* theory among agents

• Design Patterns [DeWolf]
 – Decentralised coordination patterns as design patterns
 • Gradient field / Market-Based Control

• Self-Organising Architectures
 – Meta-models of architectures (configuration)
 – Constraints of reconfiguration and interactions
Applications

- Manufacturing control (ants)
- Region detection (spiders)
- P2P protocols (gossip)
- Co-field middleware infrastructure (force fields)
- Adelfe method (cooperation)
Manufacturing Control

- Metaphor: Ant foraging
- PROSA Architecture [Hadeli 03]
- Agents:
 - Orders agents (logistics for managing products), products agents (processes tasks), resources agents (raw material, machines, etc)
- Mapping of control and production system into agents
 - Actual production system is reflected into an agents structure
 - Each resource/product/order has a corresponding resource/product/order agent (local information only)
 - Links among agents (e.g. order agents know about location of resources agents and products agents necessary to complete order)
 - Agents creates ant-agents (mobile agents) that explore the cyber production system and deposit/sense pheromone
Manufacturing Control

• Ant-agents behaviour
 – Feasibility information ants
 • Information related to the resource locations (availability, etc.)
 – Exploring ants
 • Order agents create several ants each exploring a way of realising the order (processing times, etc. gives back a report with followed route)
 – Intention propagation ants
 • Order agents create ants that propagate information about the order’s intentions (chosen best route). Ant has a fixed route, and makes bookings.

• Manufacturing control
 – Obtained from the choices made by order agents
 • On the basis of the above information
 – Actually executed by resources agents
Manufacturing Control

• Exploring Ants (EA)
 – Tries to find solutions
 – Searching for solutions is guided by local pheromones
 – Reports result of solution to the corresponding Order Agent
Region Detection

• Metaphor: Social Spiders
 – Few species of spiders are “social”
 • Sharing of web
 • Collaboration (preys, web weaving)
 • Stigmergy based on silk
 – Spiders follow silk or move to points where silk is fixed
Region Detection
Region detection

• Region detection (grey levels) [Bourjot 03]
 – Partition of image into subsets of separate objects
 – Determination of sets of connected pixels (regions)

• Idea:
 – Webs weaving determines the region

• Algorithm
 – Spider has to detect a given region (grey level)
 • Several spiders explore image and fix silk on relevant pixels
 • Silk attraction
 • Resulting web is fixed on “interesting” pixels
Region Detection
Region Detection
P2P Protocols

• **Metaphor: Gossip**
 – Light informal conversation for social occasions [WorldReference.com dictionary]
 – Periodic exchange and update of information among members of a group
 – Allows: aggregation of global information inside a population, social learning
 – Parameters: neighbourhood, level of precision of information

• **T-Man Algorithm [Jelasity 05].**
 – Generic protocol based on gossip communication model
 – Goal: network topology management problem
 • Nodes randomly connected
 • Re-organisation of connections to produce desirable topology
 – Nodes *choose* their behaviour
 – Nodes become neighbours based on information such as: geographic position, content, storage capacity
P2P Protocols

• Principle
 – Nodes maintain local view (profile) of neighbours
 – Ranking function defines the target topology (e.g. distance)
 • Serves for reorganising the set of neighbours
 • Based on “profile” of the nodes (e.g. number, useful info for topology)
 – Gossip message exchange
 • Choice of « closest » neighbour based on ranking function
 • Local exchange / combination of neighbours profile
 • Nodes become closer and closer
 – Allows adaptation of neighbours list
 – Re-organisation of the network topology

• Applications
 – Overlay networks supporting P2P systems
 • Maintenance or establishment of P2P topology
 – Sorting, Clustering of nodes, Distributed Hash table
P2P Protocols

after 3 cycles

after 5 cycles

after 8 cycles

after 15 cycles
Field-Based Infrastructure

• Co-Fields (Computational Fields) [Mamei 02]

• Principle – Force Fields
 – Agents generate application-specific fields
 – Propagation of fields in environment according to field-specific laws
 – Composition of different fields (coordination field)
 – Agents follow field gradient (downhill / uphill)
 – Agents movements are driven by fields (no central control)
 – Coordination emerges from
 • Interrelated effects of agents following the fields
 • Dynamic fields reshaping due to agents movements
 • Composition of different fields at each point
Field-Based Infrastructure

• Co-Fields Modelling of Ants Foraging [Mamei 02]
 – Two fields: Home and Food fields
 • Generated and spread by environment
 – Ants follow home or food field
 – Environment change fields according to ants movements
 • Wrinkling of fields where ants are located
 • Wrinkle = Abstraction for the pheromone
 – Fields = channels
 • Food-fields: down to food
 • Home-fields: down to home
 – Pheromone evaporation
 • Environment removes the wrinkle after elapsed time
Field-Based Infrastructure

- **TOTA – Tuples on the Air [Mamei 03]**
 - Based on Coordination Space
 - Uncoupled adaptive interactions
 - Provides Context-awareness
 - Follows Co-Field principle

- **TOTA System**
 - Agents *inject tuples* in the system
 - Environment *propagates* and *diffuses tuples* in the system
 • Propagation follows a specified pattern or propagation rule
 - Agents *locally sense* the resulting fields

- **Application Development**
 - Inject tuples (content + propagation rule)
 - Query *local* tuples (pattern-matching)
Methodologies

• ADELFE Methodology
 – Guide + help designer
 – Determination of type of system
 – Based on AMAS Theory
 • Cooperative agents
Cooperative Agent

• Cooperative attitude of an agent
 – Local and autonomous
 – Independent of the global function of the system
 – Heuristic to move through state space in a right direction

• Definition of cooperation (see types of NCS)
 – All perceived signals must be understood without ambiguity
 – Received information is useful for the agent’s reasoning
 – Reasoning leads to useful actions towards others agents
Cooperative Agent

• Cooperative Agents
 – **Skills** (what agent is able to do)
 – **Knowledge** about world (itself, other agents, environment)
 – **Interaction language**
 – **Aptitude** (reasoning)
 – **Social attitude** (cooperation)

• Cooperative agent fundamental activities:
 – **Perceives, decides and acts** in the world
 • If in a **cooperative** situation ➔ **realises** its function
 • If in an **uncooperative** situation (failure) ➔ **acts to come back** in a cooperative state
ADELFE Methodology

• Requirements
 – Definition of the studied system
 – Environment model:
 • agents, context, environment

• Analysis
 – Identification of agents
 – Adequacy to AMAS theory

• Design
 – Agent model
 • Cooperative agent design
 – Non cooperative situation model
 • Cooperative and non cooperative interactions
ADELFE Methodology

• Non cooperative situation (NCS) model
 – Table of all NCS cases
 – For each agent:
 • Agent state, NCS description, conditions, actions

• Three kinds of NCS
 – Signal perceived from environment is not understood (or with ambiguity)
 – Perceived information does not lead to activity
 – Actions are not useful for environment
Emergent Programming

• Self-assembly of instructions [Georgé 2005]

• Instruction-Agents
 – Interactions among agents
 • Send / receive data (input/output)

• A Program
 – One organisation of the instruction-agents

• Final program
 – Obtained by successive re-organisations (adaptations)

• Example: 6 agents
 – + agent, * agents
 – 3 constant-agents (A=2, B=10, C=100)
 – Output-agent (provides feedback from outside)
Emergent Programming

• Non Cooperative Situations
 – Agent is missing a partner for one of his inputs
 • Solution
 – Contact agent with output values of corresponding type
 – Agent is informed that another agent is in a missing situation
 • Solution
 – Try to act as the missing agent
 – Contact another agent

• Feedback from environment
 • Bigger (if highest value has to be produced) or
 • Smaller (if lowest value has to be produced)
Emergent Programming

\[A \times B \times C \]

\[2 \times 10 \times 100 \]

\[200 + 210 \]

\[410 \]

OUTPUT
Engineering: Open Issues

• Considered systems
 – Open dynamic systems
 – Heterogeneous agents
 – Selfish or cooperative

• Issues
 – Interactions among:
 • Independently developed heterogeneous agents
 – Management of uncertainty
 – Design and development
 • Micro- / Macro-behaviour
 • Prediction of good/bad behaviour
 – Control
Additional Activities

• IEEE SASO Conference

• Agentlink Technical Forum on Self-Organisation
 – http://www.agentlink.org/activities/al3-tf

• ACM Transactions on Autonomous Adaptive Systems
 – Inaugural issue: September 2006
 – http://www.acm.org/pubs/taas

• IEEE ETTC Organic Computing Task Force
Papers

- Journals

Papers

• Agentlink Newsletters

Papers

• Books

Adaptation Mechanisms

• Translation of Natural Mechanisms
 – Stigmergy
 • Indirect communication through the environment
 • Digital pheromone
 – intensity, evaporation rate
 • Work-in-progress
 – mapping table: configurations – action

 – Gossiping
 • Informal discussion among entities
 • Local exchange of information (neighbours list)
Adaptation Mechanism

• Translation of Natural Mechanisms
 – Trust
 • Human trust in peers
 • Trust values, calculation of risk, decision of actions
 • Updated on basis of positive/negative evidence
 – Immune System
 • B cells + antibodies (detection and marking)
 T cells (destruction)
 • Bit strings (anomaly to detect)
 • Mobile agents (B and T cells)
Adaptation Mechanism

- Implementation of Artificial Mechanisms
 - Tags
 - Markings attached to individuals (agents) and observable by others
 - Agents change behaviour on basis of utility function value observed in peers (tag)
 - Metadata
 - Additional information (metadata) about functional / non-functional information / policies
 - Middleware processes metadata and components adapt to policies
Field-Based Infrastructure

- Principle – Force Field Metaphor
 - Propagation of tuples is similar to propagation of fields in the physical space
 - Particle do not interact directly but locally perceive the fields

- Implementation
 - P2P Network of (Mobile) nodes (running TOTA middleware)
 - Nodes maintain a limited list of neighbours
 - TOTA-tuple = content + propagation rule + maintenance rule
 - Content = information
 - Propagation rule
 - How to diffuse the tuple
 - Scope (distance) of propagation of the tuple
 - Direction of propagation
 - How to change tuple content during propagation
 - Maintenance rule
 - How tuple reacts to changes in its environment
 - TOTA Middleware actively supports tuples propagation
 - If new node join the system, tuples are propagated to this new node (according to their propagation rules)
Field-Based Infrastructure

Field Tuple

C = (id, distance)
P = (propagate everywhere, increment distance by one at each hop)
M = (update structure upon network topology changes)

Agents follow gradients
• Flocks of Birds
• Traffic Management
Field-Based Infrastructure

Pheromone Tuple

\[C = (\text{id, strength}) \]
\[P = \text{(propagate in neighbourhood)} \]
\[M = \text{(evaporate by diminishing strength periodically)} \]

Agents sense pheromone

- Routing
Robots Simulation

- **Robot**
 - Autonomous
 - Resource transportation task
 - Internal State guided
 - Micro-level entity

- **Environment**
 - Two rooms
 - Narrow corridors separate the rooms
 - \(\rightarrow \) spatial interference

- Emergence of a traffic direction [Picard, 2002, 2005]