

General Principles for Engineering Self-Organizing Applications for the Real World

Colloquium on Self-Organization (DFG SPP 1183 Organic Computing)

Berlin-Adlershof 02/15/2007

Dr. Sven A. Brueckner

NewVectors, LLC 3520 Green Court, Suite 250 Ann Arbor, MI 48105, USA p: +1.734.302-4683 e: <u>sven.brueckner@newvectors.net</u> w: <u>http://www.newvectors.net/staff/brueckners</u>

www.newvectors.net

- Introduction
- Definitions
- Simple Examples
 - "Natural" SO Systems
 - Engineered SO Systems
- Characteristics of SO Applications
- General Principles for Engineering SO Applications
 - Design
 - Analysis
- Conclusion

- **1991-1997 Humboldt University Berlin** Institute for Computer Science (Al Lab)
- 1996-2000 DaimlerChrysler AG Research & Technology
 Multi-Agent Systems Group
- 2000 Ph.D. at Humboldt University Berlin "Return from the Ant – Synthetic Ecosystems for Manufacturing Control"
- 2000-now ERIM/Altarum/NewVectors
 Agent-Based Complex Systems Group (PI / PM)
 - DARPA, DTO, NGA, ONR, NIST/ATP
 - Coordination of (Robotic) Vehicles
 - Prediction/Decision Support in Urban Combat
 - Improvised Explosive Devices (IED) Prediction
 - Information Management & Collaboration Support for Intelligence Analysts
 - Decision Support for Automotive Design and Launch

Introduction

Definitions

- Simple Examples
 - "Natural" SO Systems
 - Engineered SO Systems
- Characteristics of SO Applications
- General Principles for Engineering SO Applications
 - Design
 - -Analysis
- Conclusion

Organization₁ is a mapping from a system to an ordered set, e.g., Org: {Systems} $\rightarrow \Re^+$

Different detailed definitions are possible. Common themes will include *entropy* S and *symmetry*.

Given two systems A = {a₁, ..., a_n} and B = {b₁, ..., b_k}, Org(A) > Org(B) if

- S(B) > S(A) or
- B has a higher order of symmetry than A

(Different bases for measuring entropy yield different kinds of organization: behavioral, state, ...)

Organization₂ is a *process* in a single system in which **Organization**₁ increases with time:

 $Org(A(t_2)) > Org(A(t_1)), t_2 > t_1$

Organization₃ is the *structure* resulting from Organization₂, and can be measured with Organization₁.

Definitions

Self-Organization: Organization

- Among elements within a level
- Without information flow across the boundary
- Depends critically on definition of system boundary
- A system could be partially self-organized

Emergence: Appearance of structures at a *higher level* that are not explicitly represented in *lower-level* components or external commands.

- Introduction
- Definitions
- Simple Examples
 - "Natural" SO Systems
 - Engineered SO Systems
- Characteristics of SO Applications
- General Principles for Engineering SO Applications
 - Design
 - -Analysis
- Conclusion

General Stigmergic Schema

NewVectors Examples: Engineered SO Systems

NewVectors Examples of Human Self-Organization

Pre-Computer Examples

- Movement Coordination
 - Trail Formation
 - Traffic Flow
- Market Systems
- Elections
- Document Editing
- Boards
 - Bulletin
 - In/Out
 - Situation
- Viral Marketing

H. V. D. Parunak. A Survey of Environments and Mechanisms for Human-Human Stigmergy. In D. Weyns, F. Michel, and H. V. D. Parunak, Editors, *Proceedings of E4MAS 2005*, vol. LNAI 3830, *Lecture Notes on AI*, pages 163-186. Springer, 2006.

www.newvectors.net/staff/parunakv/HumanHum anStigmergy2005.pdf

Computer Examples

- Intelligent Highway Systems
- Collaboration Environments
 - Content
 - Linking (WWW, Wiki, Groove, eMail List Servers)
 - Ranking (Google)
 - Sharing (Napster, Mobius, Grokster, ...)
 - Process:
 - RAPPID (electromechanical design)
 - Coordinators (battle plan adjustment)
 - Workflow / BPM systems
 - Auction sites (eBay)
- Recommender Systems (Amazon)
- Resource Allocation
- Scheduling and Planning

- Introduction
- Definitions
- Simple Examples
 - "Natural" SO Systems
 - Engineered SO Systems
- Characteristics of SO Applications
- General Principles for Engineering SO Applications
 - Design
 - -Analysis
- Conclusion

NewVectors Characteristics of SO Applications

Application Characteristic	Motive
Discrete	Needed for Agents (and some kinds of Organization)
Diverse	Mixed capabilities may require on- the-fly role assignment
Deprived (resource constrained)	Rules out brute-force methods
Distributed	Defines topology within which Organization takes place
Decentralized	Avoids scaling problems
Dynamic in	
• Scope	Rules out pre-designed
Speed	organization
 Obscurity 	

- Introduction
- Definitions
- Simple Examples
 - "Natural" SO Systems
 - Engineered SO Systems
- Characteristics of SO Applications
- General Principles for Engineering SO Applications
 - Design
 - Analysis
- Conclusion

Why Systems Self-Organize

What enables a set of processes (agents) to organize themselves? **Consider three** restrictions of the space of all such sets of processes. **Derive principles** from each restriction.

NewVectors Design Principles from Coupling

Basic system structure:

- **Multiple agents** •
- **Shared environment for sensing and** acting
- **Contingent behavior**

Scalability requires Local Interaction, which requires agents to

- Be small
- **Represent entities (which tend to be local)** rather than functions (which tend to be global)
- **Decentralize control**

- In Mass: Small compared with the whole system → agents are numerous
 - Example: One termite (0.1 gram) vs. hill (10 tons)
 - Inexpensive to implement
 - Easy to understand
 - Limited impact of unit failure
 - Support in industrial controls marketplace (Rockwell AB, Mitsubishi, ZWorld, Echelon, ...)
- in Time: Bounded (forgetful)
 - Example: Pheromone evaporation
 - Able to adapt to environmental changes
- in Space: Local sensing & action

Design Principles from Autocatalyticity

- A set of agents has *autocatalytic potential* if in some regions of their joint state space, their interaction causes system entropy to decrease.
- In that region of state space, they are *autocatalytic*.
- Even better if *autocatalytic* region is in the basin of an *attractor*.

Establish Feedbacks among system elements (natural for stigmergy)

- Positive feedback to keep from dying out
- Negative feedback to avoid explosion

Think Flows rather than Transitions

Diversify agents to keep flows going

- Stochasticity: Random element in decisions
- Situation in the environment → movement
 - Stateful action
 (learning/forgetting)

Flows in Digital Pheromones (Parunak et al. 2004)

NewVectors Support Agent Diversity: How?

1. Speciation

• Multiple agent types (costly to implement)

2. Repulsion

Draw on physical exclusion laws

3. Randomness

- Less dependent on explicit model of the domain
- Simple processing
- Wasps: probability of winning face-off 1/(1+e^{h(F1-F2)})
- Ants: probability of pick-up k/(k+f)

4. Differential rewards

Adaptive mechanism in agent to adjust behavior

Design Principles for Functionality

Functional Diversity → selective Potential

- Each agent supports multiple functions
- Each function requires multiple agents
- Break symmetry among agents to explore behavior space
- Functionality emerges from agent interactions Selection Pressure: requires fitness measure
- Ideal: locally visible measure that estimates global goodness of solution
- Example: agent's Option Set Entropy as measure of system convergence

Selection Mechanisms

- Genetic: *composition* of population varies
- Particle Swarm: *behaviors* of individuals vary

Synthetic Evolution

Jacob, 2001

Self-Organizing Functionality, not Application

Humans have a hard time interacting with selforganizing systems at the individual component level.

- Introduction
- Definitions
- Simple Examples
 - "Natural" SO Systems
 - Engineered SO Systems
- Characteristics of SO Applications
- General Principles for Engineering SO Applications
 - Design
 - Analysis
 - Phase Structure
 - Systematic Exploration through Simulations
- Conclusion

Example (from DARPA ANT Program)

- distributed graph coloring algorithm (Stephen Fitzpatrick, Kestrel Institute (model of resource allocation)
- Agent = Node
 - Awaken with probability AL
 - Compare own color with current knowledge of neighbor color
 - Adjust own color stochastically
 - Communicate new color to neighbors with latency CL

Performance Metrics

- Degree of Conflict (average over nodes)
- Option Set Entropy
- False Information Percentage

Number of Nodes in Graph
Number of Neighbors per Node
Number of Colors Available
Mechanism to Construct Random Graph
Probability to Activate Color Decision Process
Probability to Randomly Change Color
Time of Message Transfer to Nearest Neighbor
Constraint on Permitted Change of Local DoC
Mechanism to Select Color from Option Set

Emergent Dynamics

Example (from DARPA ANTs Program)

Example (from DARPA ANTs Program)

Prototypical (ad hoc) Implementation 6 x reduction in simulation effort to find phase change

- Introduction
- Definitions
- Simple Examples
 - "Natural" SO Systems
 - Engineered SO Systems
- Characteristics of SO Applications
- General Principles for Engineering SO Applications
 - Design
 - -Analysis
- Conclusion

- Rigorous definitions of SO concepts motivate and guide application design, analysis and deployment process
- Fine-grained multi-agent approach yields intended complex and adaptive system-level behavior
- Stigmergic agent coordination is fundamental principle to harness power of SO
- SO applications have high-dimensional state space riddled with phase changes and attractors
 - Design: shape the state space to guide the system to intended behavior
 - Analysis: statistical physics techniques + extensive simulations

NewVectors Thank You for Your Attention!

