Generating of 3D-Worlds using High-Resolution Sensors

Anko Börner

Department of Optical Information Systems of the Institute of Robotics and Mechatronics

February 15th, 2007

Content

- ➤ Introduction of the Department of Optical Information Systems
- - → Background
 - ✓ Development of high-resolution camera systems
 - → Geometrical calibration
 - → Data capture
 - → Stereo processing
 - Data fusion
 - → Visualization
- Outlook

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Department of Optical Information Systems

Introduction

- → History
 - ✓ 1981 Institute of Cosmos Research at the Academy of Science of East Germany

 - ➤ Affiliation to different DLR institutes
- → Structure
 - → 3 units
 - ✓ 47 employees (42 scientists)
- → Business fields
 - → High resolution camera systems (e.g. ADS40)
 - ➤ Small satellite technologies (e.g. BIRD)
 - System Engineering
- → Current main projects
 - ✓ Kompsat-3, MERTIS, TET/OOV

Department of Optical Information Systems

System-oriented development approach

States and the second of the s

3D-Worlds

Background

✓ What for?

- → Analysis
 - Topographic maps & surface models for cartography, geology, mining, etc.
- → Robotics (navigation and interaction)
 - ➤ Medical technology, exploration, security
- - → Facility management, museums
- → How?
 - Direct retrieval
 - → 3D measurements (e.g. laser) or modelling (CAD tool)
 - Indirect retrieval
 - → 3D scenes out of 2D images
 - Two views from different known positions
 - ✓ Human seeing, cameras

Development of high resolution camera systems

- ✓ Experience
 - First commercial digital airborne camera for photogrammetry and remote sensing (ADS40, cooperation with Leica Heerbrugg)
 - Panorama camera (EyeScan, cooperation with KST Dresden)
 - Focal plane for spaceborne system (Kompsat-3, Korean project)
 - Line scanner, 24.000 pixels per lines, panchromatric, R, G, B, NIR, 0.5 GByte/s
- → Challenges
 - Data volume, real time processing, visualization, archiving, …

Geometrical Calibration

- - ➤ Measuring tasks for metric cameras
 - → Deviations from ideal pinhole model caused by optical components ⇒
 Distortions
 - ➤ Determination of pixels viewing direction

Geometrical Calibration (cont.)

- → How?
 - ➤ Field of well known control points
 - → Goniometer
 - ➤ Diffractive optical elements

Data capture

- → Ground based
- ✓ Stereo by shifting the position

Data capture (cont.)

- → Airborne/ Spaceborne
- ✓ Stereo capability by across/ along track imaging

Stereo processing

- ➤ Needs for stereo processing
 - at least two images with known orientation and calibration data
 - reliable point matching (Biggest challenge)
- Years of trial and error, from difference and correlation to complex approaches, e.g. Semi-Global Matching and Mutual Information, H. Hirschmüller (DLR-RM)
- ➤ Derivation of textured 3D models

Data fusion

- → Laserscanner
 - Single point measurements by "time of flight" or phase analysis
 - ➤ Scanning by rotation
 - → 3D point clouds
 - ✓ Meshing

Visualization

- → Passiv
 - ➤ Stereo glasses … movies … caves
- ➔ Interactiv
 - ➤ Rendering & Raytracing
 - → Real time

