The Red Planet in »3D« New Views of Mars

HRSC

DLR's High Resolution Stereo Camera on ESA's Mars Express Orbiter

Ulrich Köhler and the HRSC Experiment Team DLR Institute of Planetary Exploration

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

15 February 2007

All HRSC images:

© ESA/DLR/FU Berlin (G. Neukum)

For further information, see:

www.dlr.de/mars www.dlr.de/mex www.esa.int www.sci.esa.int

... or contact DLR's
Regional Planetary Image Facility (RPIF): rpif@dlr.de
... or the author: ulrich.koehler@dlr.de

Mars Express

ESA's 1st mission to another planet

launch: arrival: 1st HRSC image: 10 January 2004 nominal mission: end of 2005 extension I: extension II ?

2 June 2003 25 December 2003 end of 2007 decision soon (Feb 2007)

© ESA/NASA/MOC

The instrument:

HRSC – High Resolution Stereo Camera

The HRSC's Science Team Goal:

- Global mapping of Mars in high resolution, colour, and stereo ... and answering fundamental geological questions:
- The search for the traces of water on the surface of Mars

ESA's Mars Express Mission: 2004-2007

HRSC: 3D/Topography OMEGA (F): Mineralogy (Sulfates in Valles Marineris)

Morphyology by ice and glaciers

Phobos: shape and orbit

~2 Terabyte topographical raw data

Flow structures

(Mangala Valles)

olcanism

HRSC

High Resolution Stereo Camera

- High Resolution (≥ 10m/pxl @ periapsis, ~250 km)
- Three-dimensional imaging
- Multispectral imaging
- Super Resolution Channel (≥ 2.3 m/pxl)

HRSC – modules

Function Principle of HRSC

Stereo scanner - 9 line sensors - 5184 pixel each Super Resolution Channel \bullet array sensor - 1024 x 1024 pixel © DLR

Why HRSC?

MGS-MOLA: 463 m/pixel)

MEX-HRSC: 50 m/pixel

20 km

Reason 1: High-resolution topography

20 km

Shaded Digital Elevation Models (DTM) – no images!

© NASA/JPL/MGS/MOLA (rl.) © ESA/DLR/FU Berlin (G. Neukum) (r.)

Therefore: HRSC is a perfect data set for base maps

HRSC coverage after three years in orbit

 $\ensuremath{\mathbb{C}}$ DLR; base map: USGS

Topographic Image Map 1:200,000

Topographic Image Map Mars 1:200 000

Iani Chaos Region

M 200k 2.00S/343.00E OMKT

© image data: ESA/DLR/FU Berlin (G. Neukum) © mapping: TU Berlin

HRSC Experiment Team at DLR Berlin

» Development, planning and construction of a space-qualified stereo camera for a mission to Mars, together with partners from the industry

- » Camera management and control
- Processing of raw data
 - decompression
 - radiometric correction
 - geometric correction
 - digital terrain models

» Delivery to HRSC science team

HRSC Science Team

Principal Investigator: Prof. Dr. Gerhard Neukum Freie Universität Berlin

- US Geological Survey, Menlo Park
- US Geological Survey, Flagstaff
- Jet Propulsion Laboratory, Pasadena
- Arizona State University, Tempe
- Brown University, Providence
- University of Hawaii, Honolulu
- Cornell University, Ithaca

- FU Berlin
- TU Dresden
- Uni Hannover
- DLR-Institute
- MPI für Aeronomie
- Universität Köln

- TU Berlin
- TU München
- Universität der Bundeswehr
- TU Clausthal
- Uni Münster

- Lab. de Geol. Dynamique, Paris
- Observatoire de Toulouse
- IAS
- (exchange w. OMEGA)

- Vernadsky Institute, Moscow

- Inst. of Dynamics of Geospheres, Moscow

HRSC image of Olympus Mons

Orbit 0037

Image-strip width approx. 80-100 km

Image-strip length approx. 800 km

Resolution ~15-20 m/pixel

Box:

Zoom of following images

HRSC nadir image of Olympus Mons (central part)

Orbit 0037

Frame size ~80x120 km

Resolution ~15 m/pixel

HRSC rgb ortho image created from orbit 0037 image data

HRSC rgb ortho image zoom created from orbit 0037 image data

HRSC rgb perspective-view image created from orbit 0037 image data

HRSC rgb perspective-view zoom-image created from orbit 0037 image data

HRSC rgb perspective-view zoom-image created from orbit 0037 image data

HRSC rgb perspective-view image created from orbit 0037 image data

From Earth to Mars .

SPILE

... and back!

© NASA/JPL/MGS/MOC (I.); DLR (r.)

20

HRSC-AX (»Airborne Extended») The Mars Camera for Earthlings: 9 sensors w/ 12,000 pixels

Altitude: 4,500m • Resolution: 15 cm/Pixel • May 2005

HRSC-AX (Airborne Extended): The Mars Camera on an Airplane

Brandenburg Gate

DLR HRSC-AX (Airborne Extended; 2005) altitude: 4500 m ground resolution: 10-12 cm vertical resolution: 15-20 cm

DLR HRSC-AX (Airborne Extended; 2005) altitude: 4500 m ground resolution: 10-12 cm vertical resolution: 15-20 cm

Back to Mars !

Kasei Valles Sacra Mensa

Mars today: A bone-dry planet (?)

Dunes in Argyre

Hesperia Planum - »Butterfly Crater«

Image Highlights 2006

Aram Chaos (colour-coded)

Northern Lowlands

Valles Marineris Coprates Catena

Apollinaris Patera

Ophir Chasma

Expression of water on the surface: Deltas in depressions

10 km

Hauber et al., 2007 In press

HRSC topography + OMEGA spectroscopy: sulfates at Candor Mensa

Near-recent water/ice on the surface: North-polar plains

OMEGA composition / HRSC 3D imaging

Mars – South Pole

HRSC image by courtesy of G

OMEGA maps, © IAS

Orbit 286: Mangala Valles

Expression of water on the surface ...

Difference: 350 *million* years!

3,35 billion years

...too much time to erode a valley and a river bed twice the size of the Rhine in the Martian highlands...

...water was flowing only episodically during these 350 million years

Dust-covered »icebergs« in Elysium Planum

Potential target for a future landing site: ExoMars (start 2013)

MEX orbit 32 19 January 2004 image width ~40 km