Multi-Objective Intrinsic Evolution of Embedded Systems (MOVES)

Paul Kaufmann, Marco Platzner Computer Engineering Group University of Paderborn {paulk, platzner}@uni-paderborn.de

Outline

- motivation/vision/approach
- work done
 - hardware representation model
 - evaluation framework
 - evolving circuits with multi-objective optimizers
 - results so far
- ongoing work
 - improving scalability
 - implementing resource-aware EA on Virtex-4
 - cooperation in evolvable hardware

Motivation / Vision

- investigate intrinsic evolution as a mechanism to achieve selfadaptation and –optimization for autonomous embedded systems
- an embedded system ...
 - adapts to slow changes by simulated evolution
 - typically, change of environment
 - adapts to radical changes by switching to pre-evolved alternatives
 - typically, change in computational resources
 - requires intrinsic evolution for autonomous operation

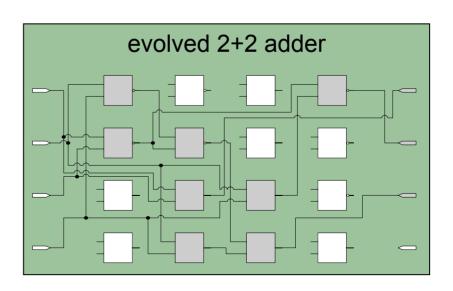
Architecture Dynamic changing resource constraints area(t), speed(t), power consumption(t) Controller Selection Reconfigurable Reconfiguration SoC New Solution EA Environment Mutation **Control logic** Actuators Sensors **Data structures** Population Fitness Evaluation **Evolutionary Operators** Test vectors Instantiated **Solution**

Outline

- motivation/vision/approach
- work done
 - hardware representation model
 - evaluation framework
 - evolving circuits with multi-objective optimizers
 - results so far
- ongoing work
 - improving scalability
 - implementing resource-aware EA on Virtex-4
 - cooperation in evolvable hardware

Hardware Representation Model

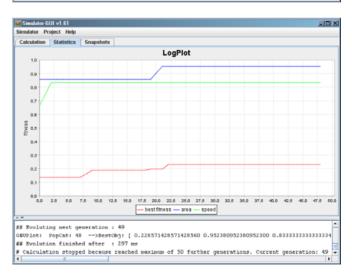
- adapted Cartesian Genetic Program (CGP) model
 - array of combinational blocks connected by feed-forward wires
 - chromosome defines configuration of the array
 - model similar to [Miller & Thomson, '96]
 - advantage: matches well FPGA architectures
 - challenge: scalability
- adapted embedded CGP (ECGP) model [Miller & Walker, '04]
 - automatically identify larger building blocks
 - reuse of building blocks
 - implemented, experiments to be done



Evaluation Framework

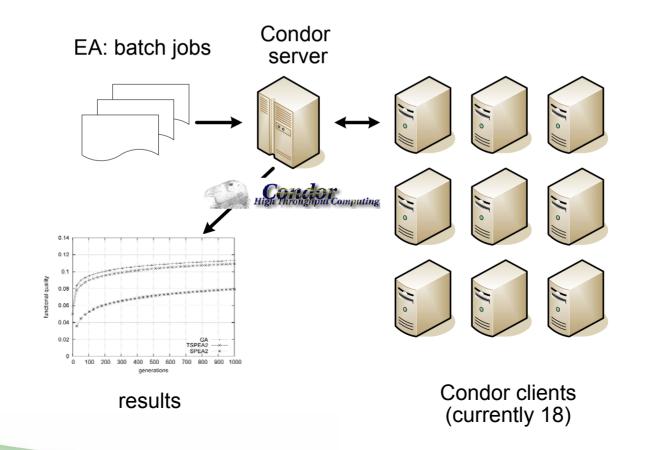
- implemented toolbox for experimenting
 - interactive and batch modes
 - stop/resume evolutionary process
 - graphical array representation and analysis tools, e.g. fitness plots, statistics,
- GCP model parametrizable
 - array dimensions
 - block complexity and functions
 - interconnect
- modular and extensible to different EAs and representation models
 - currently: variants of GA, SPEA2, TSPEA2 on CGP and ECGP models

Simulator-GUI v1.61							
Calculation Statistics	Snapshots						
chromosomeinfo for Sr	napshot:	3/ 3 4				1)
populations's Ch	hromosome:	22/100 4					
=(337 x25 325 0x5 0	028 248 5	16 319 102	8 1 2 1 4 2 7 0 2	014 621 144	1 215 13100	79-1 1015	0 17168
tness=0.131147540984 0.6	66666666666	0.50000000000	0 S()=0000 R()=	0000 D(i)=0.000	000000000 F(i)=0	000.000000.000	1000
			1				
	-	AND Let	17 <mark>11 - 100</mark> - 10	-	<u>- ;</u>	CNR	ŕ
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 08 E			WILL BUILD	2 -4 -
	Parts	308 4.0	- A WALL AND	: 1 •••	<u>••</u>	AND	·
	2	3408	1 08 L.	and wet	<u>:</u>	04 L.D	
>							
-							
# Evoluting next ge	neration :	49					-
NUPlot: PopCnt: 48	>Best(bj: [0.228	5714285714285	60 0.9523809	52380952300	0.833333333	33333334
# Evolution finished							
Calculation stopped			imum of 50 fu	rther genera	tions. Curre	nt generati	10n · 49
Curcuración Scoppe				geners		at generati	AUR. 10



Evaluation Framework (2)

- distributed computing environment to speed up experiments
 - installed Condor grid
 - implemented extensions for improved client control and Java support

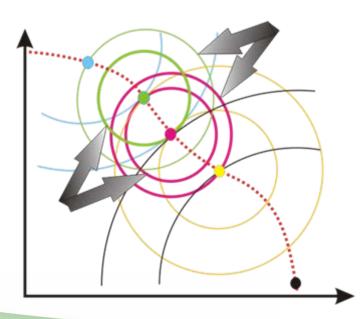


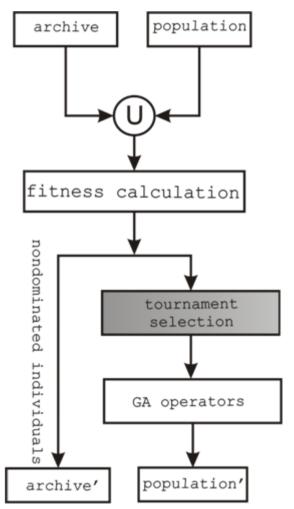
EAs for Multi-objective Optimization

- implemented and experimented with different variants of EAs
 - multiple objectives: functional quality, circuit area, circuit speed
 - experimented with rather simple test functions: adders, multipliers, parity-function, hash functions, etc.
- evolutionary algorithms
 - GA (reference algorithm)
 - conventional, single-objective genetic algorithm
 - uses elitism, tournament selection, uniform crossover, mutation
 - SPEA2
 - TSPEA2

TSPEA2

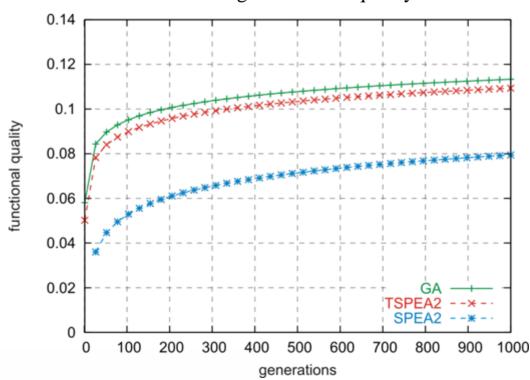
- Turtle Strength Pareto Evolutionary Algorithm
 - based on SPEA2 [Zitzler et al., '01], which maintains diversity by dissolving Pareto front clusters with k-th nearest neighbor density estimation
 - prioritize a main objective to speed up convergence
 - selection scheme similar to MO-Turtle GA [Trefzer et al., '05]





Example: Hashing Function

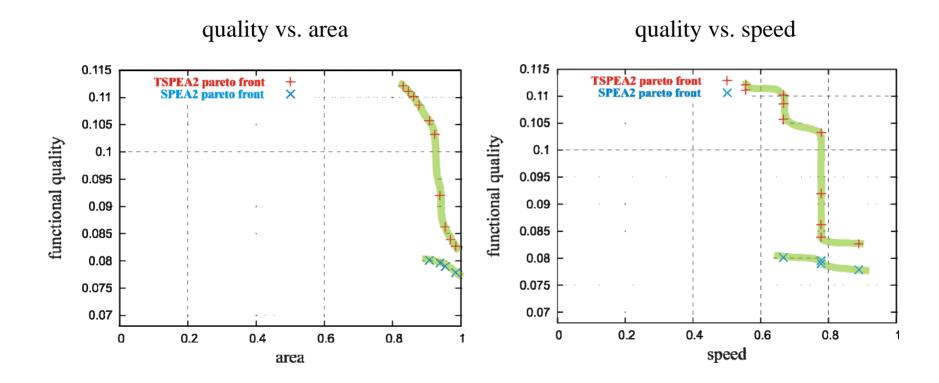
- test function used by [Tettamanzi et al.,'98]
 - find a function that maps 4096 16-bit keys to 256 indices
 - no correctness property, just a functional "quality"
 - CGP model: 8x8 4-LUT array, levels back parameter I=8



average functional quality

Example: Hashing Function (2)

• Pareto front approximations: SPEA2 vs. TSPEA2



surprisingly, TSPEA2 outperforms SPEA2 in quality and area and speed

Results so far ...

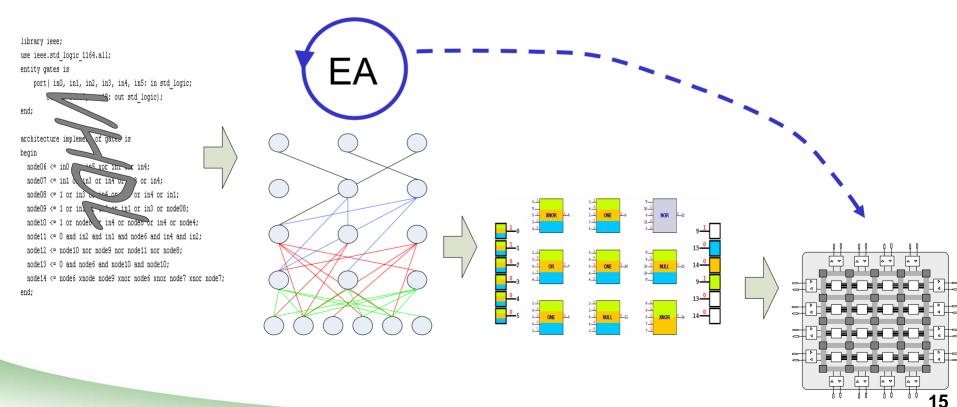
- Course Computing +
- for functions with a correctness property (eg. arithmetic functions)
 - functional quality is a constraint (100% required) and needs to be preferred during selection to achieve acceptable convergence times
 - we would expect that this comes at the price of a degraded Pareto front
 → SPEA2 and TSPEA2 generate roughly the same Pareto front
- for functions without correctness property (eg. hashing function)
 - functional quality is an objective, but TSPEA2 beats SPEA2 in both, runtime and Pareto front: possible explanations
 - our objectives are not necessarily conflicting (!)
 - we have experimented with rather small examples
 - there are not too many possible area/speed values
- to evolve more complex circuits, we have to ...
 - move to higher-level hardware representations, automatically identify larger building blocks, utilize domain-specific knowledge,

Outline

- motivation/vision/approach
- 🗸 work done
 - hardware representation model
 - evaluation framework
 - evolving circuits with multi-objective optimizers
 - results so far
- ongoing work
 - improving scalability
 - implementing resource-aware EA on Virtex-4
 - cooperation in evolvable hardware

Scalability

- native CGP model too flat for complex problems
- evolving higher-level models is more efficient but increases the effort to map to actual hardware
 - balance the computational resources between evolutionary search and FPGA mapping

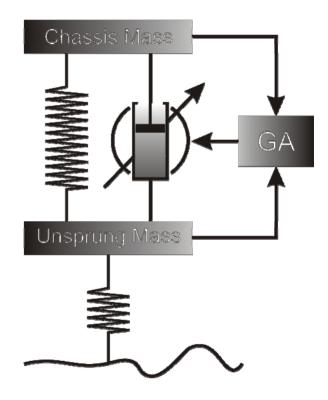


Resource-constrained EA

- implement EA on an embedded platform
 - Virtex4 platform FPGA with Power PC core (ML403 board)
 - EA and data structures in software
 - operational circuit and time-consuming computations in hardware
 - fitness evaluation amounts to 75% of EA runtime, density estimation to 12.5%
- challenges
 - what can we achieve under stringent resource-constraints?
 - eg. with population size of only 10, single-parent crossover,
 - mapping to FPGA at runtime
 - utilize dynamic reconfiguration vs. virtual FPGA on FPGA

Cooperation in Evolvable Hardware

- with Prof. Jim Tørresen, University of Oslo
- improving scalability of hardware evolution
 - automatic localization of "building blocks"
 - adding scalability-driven objectives
- investigate potential applications
 - prosthetic hand controller
 - active suspension control



Thank you for your attention!

