

Andreas Bernauer¹, Abdelmajid Bouajila², Oliver Bringmann³, Walter Stechele², Andreas Herkersdorf², Wolfgang Rosenstiel^{1,3}

²Technische Universität München

3FZI - Forschungszentrum Informatik

ASoC - Architecture and Design Methodology - DFG SPP 1183

Overview

- State of the art
- Error detection techniques (monitors)
- Self-healing CPU-pipeline (monitor & actuator)
- Reliability estimation (evaluator)
- Summary
- Future work

Fault cause: particle strike

Two models

- Single event transient (SET): gate output changed

- Single event upset (SEU): flip-flop value changed

Other common fault causes

- Migration of metal atoms
 - Electromigration: Atoms hit by electrons
 - Stress migration: Mechanical stress •
 - \rightarrow resistance increase and shorts
- Temperature cycling and thermal shock
 - Accumulated deformations
 - \rightarrow cracks and lifts
- Time-dependent dielectric breakdown
 - Conductive path in the dielectric •
 - \rightarrow lowered thresholds

© JEDE

Metal line with stress migration voids

Fault models

Class	Causes	Models
Transient error	Particle strike	SET: single event transient SEU: single event upset
Timing error	E.g. increased line resistance	Timing constraints violations
Permanent error	Shorts, breaks	stuck-at-1/-0, stuck-open, stuck-on
Design error	E.g. incompetence, logic errors	

September 14, 2006

ASoC - Architecture and Design Methodology - DFG SPP 1183

 ଲି FZI

Error detection techniques

• Time redundancy [Nic99]

DIVA technique

- DIVA [Austin01]
 - EXE' re-executes
 - READ re-reads
 - Less area overhead than duplication but comparable fault coverage
- Modified DIVA [BICC06]
 - Improvement: No READ to avoid hazards

Error detection techniques

	Technique	Transier	t Timing	Perma	Design	IP reusable?
Hardware	e.g. duplication		\checkmark			Yes, systematically
nation	Self-checking operators [Nic93]					No
Infor	Path-fault secure circuits [Tuba97]	\checkmark	\checkmark	\checkmark		No
Time	Nicolaidis flip-flop [Nic99]	\checkmark	\checkmark			Yes, systematically
	Razor [Austin03]		\checkmark			Yes, systematically
Mixed	DIVA [Austin01]	\checkmark	\checkmark		\checkmark	Yes, but not systematically

Published at BICC06

Ш

Protecting a CPU pipeline against transient and timing errors

- Prior-art:
 - Transient and timing error detection [Chardonnereau02]
 - Timing error detection and correction with Razor flip-flops [Austin03]
 - Error correction with pipeline flushing
- Detection at the next cycle \rightarrow pipeline stage input registers overwritten

Self-healing CPU pipeline [VLSI06]

- Error detection using Nicolaidis flip-flops
- History registers keep track of latest pipeline stage registers
- No pipeline flushing necessary \rightarrow fixed 2-cycle penalty

Error handling mechanism

- Implemented in Leon2 pipeline (VHDL)
- Simulation with ModelSim (fault injections) confirms
 - Detection and correction of transient and timing errors
 - Fixed 2-cycle penalty
- 23% area overhead on a Virtex-II-Pro FPGA
 - Area of XOR-trees in FPGA

September 14, 2006

ASoC - Architecture and Design Methodology - DFG SPP 1183

September 14, 2006

ASoC - Architecture and Design Methodology - DFG SPP 1183

Design time reliability estimation Factors influencing reliability: Activity Temperature Reliability Power → Activity Communication Tasks Static Activity dependency timing analysis (SystemC) analysis graph (CDG)

- Activity → Power: power state machines
- Power → Temperature
 - HotSpot tool [SSS04] : accurate run time temperature estimates
 - Inputs: geometry, power consumption, material constants
 - Outputs: spatial and temporal temperature distribution

- Temperature \rightarrow Reliability
 - Arrhenius relationship between failure rate λ and temperature T

const material constant

- $\lambda(T) = \text{const} \cdot e^{-\frac{E_a}{kT}} \qquad \begin{array}{c} \mathsf{E}_{\mathsf{a}} & \text{activation energy} \\ \text{for electromigration} \end{array}$
 - k Boltzmann's constant
 - T absolute temperature
- Coffin-Manson equation for average number of temperature cycles N_f until failure

$$N_f = C_0 (\Delta T)^{-q}$$

- C₀, q material constants
- ΔT size of temperature cycle

Design time reliability estimation

- Comparison to system at 60°C eliminates constants
- Example with Viterbi decoder showed: Power Management...
 - decreased aging acceleration factor by 2%, but
 - increased aging due to temperature cycling by 40%

Run time reliability estimation [OC06]

- Design time reliability estimation considers average case:
 - Allows to choose the right architecture
- Run time reliability estimation considers particular case:
 - Allows to evaluate the current chip condition
 - Allows to evaluate the effectiveness of taken actions
- Reliability calculation:
 - Count errors during fixed time interval.
 - Estimate failure probability for next time interval.
 - Account for redundancies.

Can tolerate permanent failure of either integer unit

Run time reliability estimation

- Approximation of failure probability P_f of units in series composition
 - OK if ignoring common mode failures
 - Allows single error counter for all units in series composition
- Reliability of system S until time $T = n\Delta t$:
 - $R_{S}(T) = (1 P_{f}(S))^{n}$
 - $\rightarrow P_f(S)$ can serve as a reliability measure
- Calculator needs only addition, shifting & multiplication.

September 14, 2006

ASoC - Architecture and Design Methodology - DFG SPP 1183

Summary

- Investigated existing error detection techniques [BICC06]
- Built a self-healing Leon2 CPU pipeline [VLSI06]
 - Incorporated monitors
 - Pipeline is resistant against timing and transient errors
- Created tool for design time reliability estimation
- Runtime reliability estimator [OC06]

- Self-healing CPU pipeline: fast, short term response.
- Learning classifier makes long term response.
- Reliability calculator as input and/or feedback to learning classifier.

September 14, 2006

Future work

- Based on work with Leon2: Automate insertion of protection blocks in CPU pipeline
- Measure accuracy and area of runtime reliability estimator
- Combine design and run time reliability estimation: Identify spots that need thorough monitoring
- Identify further actuators

Cooperations

- team of Prof. Reif, Augsburg (has been initiated)
 - Verification of self-x properties based on logic model
 - Tools for reliability estimations
- team of Prof. Brinkschulte, Karlsruhe
 - close link to organic middleware
- team of Prof. Karl, Karlsruhe
 - exchange experiences in monitoring HW
- team of Prof. Fey, Jena
 - marching pixels as an application to reliable design

Publications and References

- [VLSI06] A. Bouajila, J. Zeppenfeld, W. Stechele, A. Herkersdorf, A. Bernauer,O. Bringmann, and W. Rosenstiel. *Organic Computing at the System-on-Chip Level*. In VLSI-SoC, October 2006. Invited paper, to be published.
- [OC06] A. Bernauer, O. Bringmann, W. Rosenstiel, A. Bouajila, W. Stechele, and A. Herkersdorf. *An Architecture for Runtime Evaluation of SoC Reliability*. In Organic Computing Workshop, October 2006, to be published.
- [BICC06] A. Bouajila, A. Bernauer, A. Herkersdorf, W. Rosenstiel, O. Bringmann, and W. Stechele. *Error Detection Techniques Applicable in an Architecture Framework and Design Methodology for Autonomic SoC*. In IFIP International Federation for Information Processing, Biologically Inspired Cooperative Computing. August 2006.
- [Lipsa05a] G. Lipsa, A. Herkersdorf, W. Rosenstiel, O. Bringmann, W. Stechele. *Towards a Framework and a Design Methodology for Autonomic SoC*, 2nd IEEE International Conference on Autonomic Computing (ICAC-05), 13-16 June, Seattle, USA
- [Lipsa05b] G. Lipsa, A. Herkersdorf, W. Rosenstiel, O. Bringmann, Walter Stechele. *Towards a Framework and a Design Methodology for Autonomic SoC*, Proceedings Dynamically Reconfigurable Systems, Self-Organization and Emergence, Architecture of Computing Systems (ARCS) 2005, pages 101-108.
- Credits go to Björn Sander and Johannes Zeppenfeld for their contribution to this project.

- [SSS04] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy, D. Tarjan. *Temperature Aware Microarchitecture: modeling and implementation*. TACO 1(1):94-125, 2004.
- [Austin03] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham,
 C. Ziesler, D. Blaauw, T. Austin, K. Flautner, T. Mudge. *Razor: A Low-Power Pipeline Based on Circuit-Level Timing Speculation*,
 36th Annual International Symposium on Microarchitecture (MICRO-36), December 2003.
- [Chardonnerau02] D. Chardonnereau et al., "32-Bit RISC Processor Implementing Transient Fault-Tolerant Mechanisms and its Radiation Test Campaign Results", Single-Event Effects Symposium, NASA, Apr. 2002.
- [Austin01] C. Weaver and T. Austin, *A Fault Tolerant Approach to Microprocessor Design. I*in: Proc. Intl. Conf. Dependable Systems and Networks, pp. 411–420 (2001).
- [Tuba97] N. Touba and E. McCluskey, Logic Synthesis of Multilevel Circuits with Concurrent Error Detection, IEEE Trans. CAD 16(7), 783–789 (1997).
- [Nic99] M. Nicolaidis, *Time Redundancy Based Soft-Error Tolerance to Rescue Nanometer Technologies*. In: Proc. 17th IEEE VLSI Test Symposium, pp. 86–94 (1999).
- [Nic93] M. Nicolaidis, *Efficient Implementations of Self-Checking Adders and ALUs.* In: Proc.23rd Intl. Symp. Fault-Tolerant Computing, pp. 586–595 (1993).