
© DodOrg 2006, 14th September

Digital On-Demand Computing Organism for Real-time Systems
DodOrg

SPP OC Kolloquium

DFG SPP 1183 “Organic Computing”

Stuttgart, September 14th and 15th, 2006

Universität Karlsruhe (TH)

© DodOrg 2006, 14th September, Slide 2

Talk Overview

►Project Motivation and Overview

►DodOrg Application Scenario: Interaction of the System Components

►Biological Messenger Concept in Middle-, Hardware, and Monitoring

►Assembly and Results of main components:
Monitoring
Middleware
Ultra Low Power Processing
Hardware
Application: Robot Control

►Conclusions

© DodOrg 2006, 14th September, Slide 3

Overview and Biological Motivation

Myocardial
Cell

Nervous System

Application API

Application
Monitoring

Hardware
Monitoring

Middleware
Monitoring,
Feedback

Task Distribution,
Configuration,
Optimization, Healing

Organic Robot
Control System
(Wörn)

Organic Middleware
Decentralized Control Loops
(Brinkschulte)

Organic Processing
Cells
(Becker)

Ultra Low Power
Processing
(Henkel)

Ne
ur

ob
io

lo
gi

ca
l C

on
ce

pt
s (

Br
än

dl
e)

Mo
ni

to
rin

g
(K

ar
l)

Heart

Br
ain

 L
ev

el
Or

ga
n

Le
ve

l
Ce

ll L
ev

el

© DodOrg 2006, 14th September, Slide 4

Defective fan

Robot Control System: Dynamic Scenario

Classic Scenario:
►Only those scenarios can be handled:

that had been considered in advance
where the cause can be detected
where the corresponding reaction had been explicitly programmed

►Lack of adaptation leads to insufficient reactions (e.g. shutdown …)

DodOrg Scenario:
►System reaction based on indications (higher level of abstraction)

e.g. CRC/bit error rate, network bottleneck, change of robot model
►Proper reaction possible even if:

Scenario was not considered in advance
Cause was not detected
Reaction was not explicitly programmed

►Flexible response to changed environmental situation

Klaus Voltage peak MaintenancePossib
le Faults

Change of Robot Model

© DodOrg 2006, 14th September, Slide 5

OPC

MW Middleware representative

Failure Scenario: DodOrg Response

► Failure detection
Cause: Change in local system parameters, e.g.
on-board temperature
Indication: Monitored errors,
e.g. Increased bit-error rates

► Self-healing reaction:
1. Cell Emergency call to Middleware (MW)
2. MW asks monitor to aggregate local data
3. Task migration

1. Initiated by MW
2. Swapping and fine-tuning by low-power

manager
3. Cell configuration and data path adaptation in

NoC
4. System settling

MO OPC

OPC OPC

OPC OPC

OPC

MW

OPC

OPC OPC

OPCOPC

OPC

OPC

OPC

OPC

OPC

MO

1

2

3a

3c
RR R

RR R

RR R

3b

MO

OPC

OPC Organic processing cells Monitor instance

Idle cells

© DodOrg 2006, 14th September, Slide 6

Hormones: A Biological Model
(Prof. Brändle)

► Chemical regulation by hormones in the animal
body

The chemical messengers (hormones) reach
every cell of the body.
The specification of the target cell alone
decides whether it reacts to the transmitter.
The hormone system either affects the target
cells directly, or it activates other hormone
producing sub-systems. The production of
hormones is mostly controlled by negative
feedback loops.
The hormone either penetrates the target cell
membrane, or the hormone binds to a
receptor in the cell membrane, activating a
second messenger

© DodOrg 2006, 14th September, Slide 7

+ +

++ + + + +

-

-

Endocrine Tissue
B

Endocrine Tissue
C

Endocrine Tissue
A

Target Cells

- -

Biological Messenger Concept in the Middle- and Hardware
(Prof. Brändle)

►Chemical regulation by hormones
(chemical messengers)

►Hormones reach every cell of the body
►Target cell alone decides whether it reacts
►Mostly controlled by negative feedback loops.

►Decentral control using messengers
(data packets)

►Packets reach (every) cell of the architecture
►Target OPC alone decides whether it reacts
►Controlled by decentral feedback loops.

+ +

++ + + + +

-

-

Endocrine Tissue
B

Endocrine Tissue
C

Endocrine Tissue
A

Target Cells

- - + +

++ +

Endocrine Tissue
C

+ + +

-

-

Middleware

Application
Task 1 … n

Organic Processing Cells

-

Monitor

- -

© DodOrg 2006, 14th September, Slide 8

Monitoring: Overview
(Prof. Karl)

►Low-Level Monitoring
HW-Level: Fixed, but parametrizeable Monitoring
Hardware in every Cell
SW-Level: System monitoring and data aggregation
(comparable to /proc filesystem)

►Interface API
Provides uniform Interface to Monitoring Subsystem
Simple, extensible Communication
Interface
Collection of Monitoring Resources
Management & Processing of Monitoring Rules
Generation of Events (Messengers), if required

►High-Level Monitoring
Processing of Low-Level Monitoring information
according to given rules
Correlation of various events into distilled information
required by Middleware/Low-Power
Task of one or more Monitoring Cells

Monitoring consists of

© DodOrg 2006, 14th September, Slide 9

Monitoring: Module / Capsule Concept
(Prof. Karl)

►Aim
Enable and Support Self-X Capabilities
Focus on increased Self-Awareness

►Requirements
Sustained System Monitoring
Real-time Analysis and Evaluation

Correlation of (many) Events
Identification of Problems/Causes

Semantic Data Compression
Adaptivity (Reconfiguration)

►Separation of Interface & Functionality
Monitor Capsule (Interface)

Standardized Query API
Monitoring Module (Functionality)

Domain-specific
Dynamically Reconfigurable
Extract, Process, & Store Data at Source

© DodOrg 2006, 14th September, Slide 10

Monitoring: Software Prototype
(Prof. Karl)

►Monitoring Cell
Realized as Monitoring Service
Implements Capsule / Module Concept

Low-Level Monitoring on OPC Level
(In-place Semantic Compression)
Rule-based Analysis and Evaluation on Monitoring
Cell Level

Automatic handling of cell and rule removal/additions

►Simple Communication Protocol
Light-weight and extensible
Provides individual Message Types

Configuration & Information Request
Invoke Low-Level Monitoring

Performance Counters for System Events
System Events currently provided by
Operating System
Prepared for Interfacing with
Hardware Prototype (next slide)

Apply complex Analysis and Evaluation Rules
Event Communication

© DodOrg 2006, 14th September, Slide 11

Monitoring: Hardware Prototype
(Prof. Karl)

►Monitoring of Memory Accesses
Aim: Improve Data Locality

Access Latency
Communication Overhead

Prototype currently implemented
Interfacing with Cell-independent
Network Interface and Configuration Control
Rule-based Memory Access Monitor
Lightweight infrastructure suitable for DodOrg hardware

Work in progress:
Estimation of Hardware Costs

Communication Infrastructure
Monitoring Infrastructure

Quality of Semantic Compression
Event Preprocessing Capabilities
Monitor Communication Overhead

© DodOrg 2006, 14th September, Slide 12

Exploring Real-time Monitoring Design Space
(Prof. Karl)

►Prototype: Adaptive Data Locality Optimization (DLO)

►Real-time monitoring and interpretation of memory
accesses to improve data locality

►Exchangeable modules for data retrieval and interpretation

►DLO approach partites into Data
Acquisition (Monitor) and
Optimization/Tools

►Monitoring data provided by Real-time
Network and Cache Monitor

Integrated into Simulation Platform
(Simics)

►Monitor drives On-line Locality Optimizer
Adaptive Run-time System Data
Migration (ARS)

►Off-line (non real-time) tools
Pattern Analysis
Data Visualization
Goal: Real-time Analysis, Evaluation,
and Visualization

Pattern
discovery

Pattern
Bottlenecks
Reason
Strategies

Visualization

PDK

Performance Data

Statistics on global events
Inter-node communication
Cache operation profile
Access activities of data
structures
Cache miss categories

Cache Monitor

Network Monitor

Simulation
Platform

Data Acquisition

Data affinity
Precompiler

Tools for Optimization

Runtime Adaptive
System

On-line data migration

Code with
prefetching

© DodOrg 2006, 14th September, Slide 13

Middleware
(Prof. Brinkschulte)

► Receive tasks from the application

► Form organs with information from
application and monitoring

Requirements of the tasks
Relations of the tasks
Condition of each cell and it‘s
neighborhood

► Distribute the tasks to the cells thereby
using a scheduling fine tuning from power
management

► Adapt organs to environmental influences
e.g. increased bit-rate errors

Application

Middleware

Mo
nit

or
ing

Po
we

r M
an

ag
em

en
t

Tasks

OPC OPC OPC OPC

OPC OPC OPC OPC

OPC OPC OPC OPC

OPC OPC OPC OPC

OPC

OPC

OPC

OPC

OPC OPC OPC OPC OPC

OPCOPCOPC OPC OPC

OPC

OPC

OPC

OPC

OPC

OPC

OPC OPC OPC OPCOPCOPC

OPC

OPC

OPC

OPC

OPC

OPC

OPC

OPC OPC OPC OPC

OPC OPC OPC OPC

OPC OPC OPC OPC

OPC OPC OPC OPC

OPC

OPC

OPC

OPC

OPC OPC OPC OPC OPC

OPCOPCOPC OPC OPC

OPC

OPC

OPC

OPC

OPC

OPC

OPC OPC OPC OPCOPCOPC

OPC

OPC

OPC

OPC

OPC

OPC

OPC

OPC OPC OPC OPC

OPC OPC OPC OPC

OPC OPC OPC OPC

OPC OPC OPC OPC

OPC

OPC

OPC

OPC

OPC OPC OPC OPC OPC

OPCOPCOPC OPC OPC

OPC

OPC

OPC

OPC

OPC

OPC

OPC OPC OPC OPCOPCOPC

OPC

OPC

OPC

OPC

OPC

OPC

OPC

© DodOrg 2006, 14th September, Slide 14

Middleware: An Artificial Hormone System for a Decentralized Task Distribution
with Self-X-Properties

(Prof. Brinkschulte)

Three different types of hormones are used:
►Eager value: This hormone determines, how well a OPC can execute a task.

►Suppressor: A suppressor represses the execution of a task on a OPC.

►Accelerator: An accelerator favors the execution of a task on a OPC.

For i,γ
received

suppressors
Siγ

For i,γ
received

accelerators
Aiγ

Local
eager value

Eiγ

Suppressors
Siγ

send by i, γ

Modified
eager values

Emiγ
send by i, γ

For i, γ
received

eager values
Emiγ

Σ a>b
?

Accelerators
Aiγ

send by i, γ

Take task Ti on
OPCa

b

+ +

-

Task Ti on OPCγ

© DodOrg 2006, 14th September, Slide 15

Middleware: Hormone Cycle
(Prof. Brinkschulte)

send
hormones

(S)

decide
(D)

tSD

tDS► Hormone cycle
of a cell:

tSD > tDS + 2 tK (with tK = communication time)

2m-1 cycles
(with m = numbers of tasks)

► Precondition for each
hormone cycle: tDS should be as small as possible

tDS = 0: tSD > 2 tK

► Worst-case time
behaviour for the
task allocation:

© DodOrg 2006, 14th September, Slide 16

Middleware: Hormone Simulator
(Prof. Brinkschulte)

► Developed a simulator for
task distribution as proof of
concept

► Tasks are distributed to
processing cells, which run
independent from each
other (asynchronous)

► Simulator uses different
kinds of hormones to form
organs consisting of related
tasks (same color in the
simulation)

► Found upper bounds for the
task distribution time

Suitable for real-time
applications

© DodOrg 2006, 14th September, Slide 17

Ultra Low Power Processing: Motivation and Concept
(Prof. Henkel)

OPC OPC OPC OPC

OPC OPC OPC OPC

OPC OPC OPC OPC

OPC OPC OPC OPC

OPC

OPC

OPC

OPC

OPC OPC OPC OPC OPC

Middleware

Mo
nit

or
ing

Swapping
Execution

Swapping
Execution

Swap Power
Manager

Swap Power
ManagerSwap

Scheduler
Swap

Scheduler

Power Manager

......

Task 1

Application 1
Impl. 1

Application 1
Impl. 1 Application 1

Impl. m

Application 1
Impl. m

...

Task K

Application K
Impl. 1

Application K
Impl. 1 Application K

Impl. n

Application K
Impl. n

►Tasks of the Power Manager
Reduction of power consumption, while meeting given constraints (e.g. power budget,
deadlines, etc)
Optimization of initial mapping of tasks to OPCs given by middleware
Reaction to changing constraints from within the organ
Call to middleware, if a good solution (mapping, binding) on organ level can not be found

Ultra Low Power Processing

© DodOrg 2006, 14th September, Slide 18

Time

P
ow

er

DSP
Task

A

Ultra Low Power Processing: Using Potentials for Energy Savings
(Prof. Henkel)

Energy consumption before and after
algorithm swapping

Task
A Task

A’
Task

A’
Time

P
ow

er Algorithmic swapping

Energy consumption before and after
implementation swapping

(swap between micro-architectures or fabrics)

Time

P
ow

er

GPP Task
A

► Potentials for energy savings
Tasks consume energy depending on which OPC they
are running on
Different algorithmic implementations of a task have
different energy consumption

► Seamless swapping-on-the-fly according to changing
environment to minimize overall energy consumption

Mapping of tasks to OPCs (implementation swapping)
Choosing the algorithmic implementation (algorithmic
swapping), e.g. matrix multiplication in sparse and
normal matrices

► Tradeoffs have to be considered
Energy consumption, execution time, numeric
(algorithmic) error, etc …

© DodOrg 2006, 14th September, Slide 19

► A swapping of implementations or algorithms only amortizes, if it runs for a certain time
The point of time where the swapping amortizes is called point of break-even tBE

► To decide whether to swap or not, a prediction of power consumption and upcoming
constraints is needed

Ultra Low Power Processing: To swap or not to swap – Point of Break-Even
(Prof. Henkel)

► Scenario: Input data is
processed by a filter

1. Based on changing
constraints a “smaller” filter is
necessary

2. After checking the expected
run time against the point of
break-even a swap is
performed

3. The resulting configuration
saves energy and meets
constraintsTime

Energy
savings

En
er

gy

Po
we

r

Algorithm A on DSP

Swapping

Algorithm A‘ on DSP

Point
of break-even

tBE

Pold

Pnew

© DodOrg 2006, 14th September, Slide 20

Ultra Low Power Processing: Swapping-on-the-fly – Transferring Context
(Prof. Henkel)

Possibilities to transfer the context:
1. Tune in (e.g. Filter; provide input data to both tasks; determine when

tune in is finished)
2. Wait until end of data package (e.g. block-by-block encryption)
3. Restart computation (kill Task A if runtime up to now is minor; needs availability of previous

input data)
4. Knowledge-based system (application engineer embeds dedicated positions with

corresponding methods for transferring user context)

Overlap

Task A:

Task A’:

Instantiate A’ Transfer context
Decision to swap

Passing Control

Swapping-on-the-fly: Task A Task A

Task A Task A’

OPC 1 OPC 2

OPC 1

OPC 1 OPC 2

Task A Task A’

Impl. swapping

Alg. swapping

Alg. and impl. swapping

Overlap

Task A:

Task A’:

Instantiate A’ Transfer context
Decision to swap

Passing Control

Swapping-on-the-fly:

© DodOrg 2006, 14th September, Slide 21

Ultra Low Power Processing: Implementation Swapping – From OPC to OPC
(Prof. Henkel)

Step 1: Determine initial configuration
Hierarchical organization: mapping / binding &
scheduling
Using an algorithm based on PETS (Performance
Effective Task Scheduling) [1] for mapping / binding
tasks to OPCs, considering deadlines, energy, etc.
Local on-line RT scheduling on OPCs,
e.g. earliest-deadline-first (EDF) or
rate-monotonic-scheduling (RMS)

Step 2: React on changes in
environment / constraints by changing the:

On-line Scheduling (e.g. EDF)
Algorithmic implementation (using PETS)
OPC-type implementation (using PETS)

O
P

C
 n

O
P

C
 1

Task Graph

Lo
ca

l Q
ue

ue
s

On
lin

e-
Sc

he
du

ler

OPC1

[1] Ilaravasan et al. Performance Effective Task Scheduling Algorithm for Heterogeneous Computing System. 2005

Task Mapping for
Heterogeneous MPSoC

Lo
ca

l Q
ue

ue
s

On
lin

e-
Sc

he
du

ler

OPCn

© DodOrg 2006, 14th September, Slide 22

Ultra Low Power Processing: Adapted PETS in Detail
(Prof. Henkel)

DRC Data Receiving Cost
DTC Data Transfer Cost

EFT Earliest Finish Time
EST Earliest Start Time

Deadline

1 4 6 5

3 7

2 8

9 10

Deadline

1000

Request

77

Stretching

ACC Average Computation Cost

1 4 6 5

3 7

2 8

9 10

1000

Request

77

OPC 1

OPC 2

OPC 3
Fixed schedule Independent tasks with time

frames for online scheduling

1

2 3 4 5 6

7 8 9

10

18
12

9
11

14

17 1311

15132327
23

16

19
Task P1 P2 P3

1 14 16 9
2 13 19 18

Execution time
matrix

Adapted
PETS

Request time: 0

Deadline: 100

© DodOrg 2006, 14th September, Slide 23

Ultra Low Power Processing: Scheduling – Results and Outlook
(Prof. Henkel)

Request
Taskgraph A

Deadline
Taskgraph A

Deadline
Taskgraph A

Request
Taskgraph B

Deadline
Taskgraph B

Taskgraph A Taskgraph B

TGFF task graphs with request times
and deadlines

Schedule of above task graphs on a heterogeneous MPSoC
produced by adapted PETS

Results:

► The complexity for Adapted PETS can be
shown to be

which is supported by runtime experiments
(v = tasks, e = dependencies and p = OPCs)

Outlook:
► Consideration of constraints like power,

communication, etc. in Adapted PETS
► Consideration of multiple algorithms for tasks

in Adapted PETS
► Policies for violated deadlines
► Mechanisms for the swapping of algorithms

and implementations

© DodOrg 2006, 14th September, Slide 24

Case Study: Swapping-on-the-fly
(Prof. Henkel)

►Swapping-on-the-fly between different Audio-Filters
Data type float: good quality; high CPU load

Implemented on MicroBlaze (MB)
Data type int: minor quality; low CPU load

Implemented on MB and DLX (MIPS)

HW
Filter

SW
Regs

BRAM

Memory
Mapper

OPB

FIFO
BRAM

Control & Data

Contains Sound Data

DLXDLX MBMB

Audio
Out

Audio
Out

© DodOrg 2006, 14th September, Slide 25

Hardware: Cell Overview
(Prof. Becker)

►Modularity
Same footprint for all cells
Common infrastructure
Cells can easily take over for
defective neighbors
Interface for higher-level functions
(middleware, monitoring) stays the
same

►Local intelligence
Power management
Basic monitoring facilities
Configuration management
Router
Built into each cell

►Cross-hierarchy Features
Monitoring
Low Power Management
Hormone Broadcast

Clkglobal
Clklocal

Cell-Specific
Functionality
(μProc, DSP,
FPGA,FPFA,
Memory,
Monitoring,
etc.)Clock and Power

Management (DVFS)

Configuration
Control

State Interface

Configuration Cache

Router

O
bs

er
ve

r

Network Interface

N
E
S
W

L

Power Status
Power Control

Monitor Status
Observer Control

Cell Data path

Monitoring Data
Emergency Calls

Messenger

Channel
Allocation/Release

Configuration

Lo
w

 L
ev

el
 M

on
ito

rin
g

© DodOrg 2006, 14th September, Slide 26

Hardware: Routing Unit
(Prof. Becker)

Adaptive Network with Wormhole based switching technique

►Support for three different kinds of traffic
Guaranteed Throughput

Three phase operation (GT- Channel Initialization, GT-Usage, GT-Channel-Release)
Contribution towards real-time requirements of (Robot)-control application.
Fault tolerance through backtracking possibility

Best Effort Traffic
Low Latency
Uses available bandwidth

Broadcast
Dedicated broadcast rounds
Adjustable broadcast range

►Seamless integration based on Virtual Channel Router
Shares physical channel bandwidth among all three types of traffic
Gradient based routing

►Extension
Adaptive/Fault tolerant routing algorithms
Behavior based on next neighbor information

Router

N
O
S
W

L

© DodOrg 2006, 14th September, Slide 27

Hardware: Broadcasting Scheme
(Prof. Becker)

distribute round 1

►Enables efficient distribution of
Hormones used by middleware
Local neighbor information

Monitor data
Cell Emergency Calls

►Broadcast range determined by
TTL-Counter
►Fault tolerance

Cell receives broadcast packet
from different input ports
CRC-Unit discards faulty packets
No return path necessary through
build in redundancy (Extension:
probabilistic broadcast to reduce
traffic)

2

2

2

2

2

2

2

2

1

11

1

1

1

1

1

1

1

1

1

1

1

11

1

11

1

1

1

1

0

0

0

0

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

01

0

0

0

0

0

00

0

0
0

0

0

0

0

0

0

0

1

0

0

Initiate broadcastdistribute round 0distribute round 2distribute round 3

unprocessed
BC-packet 1

unprocessed
BC-packet 2

processed
BC-packet 2

processed
BC-packet 1

© DodOrg 2006, 14th September, Slide 28

Hardware: Cell Configuration Management
(Prof. Becker)

►Challenge
Multiple configuration access
ports on cell level
No central control instance
Support frequent
reconfiguration/ programming
Distributed sources/instances

►Aim
Unified configuration
interface (protocol) on cell-
level
context sensitive self-
configuration, cell builds up
its infrastructure

Cell

Configuration
Control

State Interface
Middleware

Master Configuration
Sequence

Request/Set current
cell status

Configuration
Bitstream

Sub Configuration
Sequence

•Guide cell
configuration

•Generate context
dependent sub
configurations

Sub Configuration
Sequence

Cell

Cell unit

State Interface

Configuration
Bitstream

Cell unit

Cell
State Interface

Configuration
Bitstream

Cell unit

Cell
State Interface

Configuration
Bitstream

Cell unit

Cell

Low-Power

© DodOrg 2006, 14th September, Slide 29

Hardware: Router Implementation Details
(Prof. Becker)

►Router Synthesis
0.13µ TSMC130 standard-cell-technology
Design parameters:

Datalink :16 Bit (Motivation)
Flit_type : 2 Bit
Adresslength: 8 Bit
Ports : 5
Virtual-Channels: 4
FiFo- depth : 3 Flits

Operating frequency : 500 MHz
Total dynamic Power : 42mW
Total router area : 0,0887 mm2

►Xilinx XC2VP30- FPGA Prototype
#Registers: 1355 (4%)
#Flip-Flops: 1347
#Latches : 8
#LUT : 3791 (13%)
#Occupied Slices: 2135 (15%)

►Leon 2 Processor
Occupied Slices ca. 60%

© DodOrg 2006, 14th September, Slide 30

Organic Robot Control Architecture
(Prof. Wörn)

∞

Slow computing tasks
in cartesian space

Robot
Interpreter

Inverse
Kinematics

CP
Interpolation

Cascaded control structure for each joint of the robot

Fast computing tasks in joint space

Inverse
Dynamics

Palletizing robot

PTP
Interpolation

Position
Controller

Speed
Controller

+
-

+
-

Current
Controller

Motor
Joint i

+
-

+

►Expensive to develop everything from scratch or to shut down
system to change algorithms

►System is designed to self-adapt to many varying tasks and
unknown conditions

Control system is provided with a set of algorithm each designed for a
different mode of operation
Adaptation and switching strategies to determine which is the
appropriate controller, e.g. PID, LQG, H2, H controller
E.g. to achieve high accuracy, to pick up an unknown
load or for very fast end-effector movement

∞

© DodOrg 2006, 14th September, Slide 31

Organic Robot Control: Motivation
(Prof. Wörn)

►Robot control software is inherently coupled to the mechanical structure and to the
underlying hardware

The development of motion control software for serial robots has traditionally been a longsome
process that was generally a custom approach for each robot type
Control software is mostly manufacturer specific and based on proprietary solutions

►Monolithically structured robot controls can only be
adapted and enhanced with high efforts

Robotics research in software and hardware
architectures focuses on developing systems that
feature modularity, flexibility and intelligence
The development of a generalized software
architecture that applies to all classes of robots is
required

►Robot control software developers must deal with a
wide variety of different robot kinematics and tasks

Demand for self-configurating control systems and
plug and play behavior for different kinematics,
tools, processes and tasks Spherical robot

Cylindrical robot

Hexapod

Articulated robot
on a linear unit

Cartesian robot Articulated robot

Scara robot with
spherical wrist

© DodOrg 2006, 14th September, Slide 32

Organic Robot Control Configurator
(Prof. Wörn)

►Development of a configuration system and a graphical user interface in order to configure
the robot control on the fly (self-configuration)

The user describes the mechanical structure of a particular robot and then let the configurator
automatically generates the motion control system

►The configurator opens up numerous
selection and combination possibilities:

Number and type of joints
Arrangement of joints and constraints
concerning their movement
Geometric dimensions, arm lengths,
workspace
Dynamics data for each link: mass, location
of the center of mass and inertia tensors
Interpolation clock, acceleration profile and
interpolation algorithms that should be
supported, e.g. ptp, linear, circular, spline,
…

© DodOrg 2006, 14th September, Slide 33

Organic Robot Control: First results
(Prof. Wörn)

►The self-configuration of the kinematics robot model is done in several steps:
Automatic assignment of a frame to each joint according to the Denavit-Hartenberg rules
Determination of link parameters and derivation of 4x4 homogenous transformation matrices

►Solving the direct kinematics problem and then the inverse kinematics problem
The direct kinematics model computes the resulting position and orientation of the tool center
point (TCP) when the robot’s joint variables are given
Of more importance in motion control is the inverse kinematics model which computes the joint
variables given a desired position and orientation of the robot’s TCP

►The inverse kinematics problem is very complicated, because a highly coupled nonlinear
equation system has to be solved

Time needed to self-configure
kinematics robot model (on a
2.0 GHz pentium processor)

Degrees of Number of
Robot freedom Configuration setting up solving solutions
Cartesian robot 5 TTT 00:00:06 00:00:34 1
Scara I 4 RRT 00:00:03 00:00:11 2
Scara II 4 TRR 00:00:04 00:00:14 2
Cylindrical robot 6 RTT 00:00:13 00:03:12 4
Stanford arm 6 RRT 00:00:20 00:06:58 8
Articulated robot 6 RRR 00:00:27 00:09:42 8

Time need (h:min:sec)

© DodOrg 2006, 14th September, Slide 34

Organic Robot Control: First results
(Prof. Wörn)

► To solve kinematic equations a knowledge base about mathematical solutions was built and a
pattern based transformation technique is applied

Solutions are extracted by pattern matching with knowledge base
Configuration system uses forward-chaining and is written in JESS 7 (Java Expert System Shell)

Complexity of
kinematic equations

► Ongoing work:
Self-configuration of the Jacobian expressions in order to determine singular configurations
Self-configuration of the dynamics robot model of motion for both simulation and control
Self-configuration of trajectory generation functionalities

► Future work:
Self-adaptation of the robot controller to varying processes and tasks
Self-optimization of the path planning

Number of
Robot equations 0 1 2 3 4 5 6
Cartesian robot 252 11 129 92 5 10 5 -
Scara I 120 26 25 23 46 0 - -
Scara II 120 32 17 28 43 0 - -
Cylindrical robot 252 0 19 59 119 50 5 0
Stanford arm 252 0 8 11 75 116 42 0
Articulated robot 252 0 6 4 47 64 89 42

Number of equations with x = 0,…,6 unknown joint variables

© DodOrg 2006, 14th September, Slide 35

Conclusions

►Current status of the DodOrg project:
Monitoring Infrastructure

Interface definition and design space exploration
Software and hardware prototype

Middleware
Exploration of basic principles -- upper bound for self-configuration found
Hormone simulator

Ultra Low Power Processing
Categorized the basic principles for swapping-on-the-fly and conducted a hardware case study
Task Mapping / Scheduling Simulator

Organic Processing Cells
Exploration of the cells communication and configuration infrastructure
FPGA- Router Prototype

Organic Robot Control
GUI-based generalized self-configuring control system for motion control of different robot types
Kinematic model automatically generated from a description of the robot’s mechanical structure

© DodOrg 2006, 14th September, Slide 36

Thank you for your attention !

Questions

	Digital On-Demand Computing Organism for Real-time Systems�DodOrg
	Talk Overview
	Overview and Biological Motivation
	Failure Scenario: DodOrg Response
	Hormones: A Biological Model�(Prof. Brändle)
	Biological Messenger Concept in the Middle- and Hardware �(Prof. Brändle)
	Monitoring: Overview�(Prof. Karl)
	Monitoring: Module / Capsule Concept�(Prof. Karl)
	Monitoring: Software Prototype�(Prof. Karl)
	Monitoring: Hardware Prototype�(Prof. Karl)
	Exploring Real-time Monitoring Design Space �(Prof. Karl)
	Middleware �(Prof. Brinkschulte)
	Middleware: An Artificial Hormone System for a Decentralized Task Distribution 	with Self-X-Properties� (Prof. Brinkschulte)
	Middleware: Hormone Cycle�(Prof. Brinkschulte)
	Middleware: Hormone Simulator�(Prof. Brinkschulte)
	Ultra Low Power Processing: Motivation and Concept�(Prof. Henkel)
	Ultra Low Power Processing: Using Potentials for Energy Savings�(Prof. Henkel)
	Ultra Low Power Processing: To swap or not to swap – Point of Break-Even�(Prof. Henkel)
	Ultra Low Power Processing: Swapping-on-the-fly – Transferring Context �(Prof. Henkel)
	Ultra Low Power Processing: Implementation Swapping – From OPC to OPC�(Prof. Henkel)
	Ultra Low Power Processing: Adapted PETS in Detail�(Prof. Henkel)
	Ultra Low Power Processing: Scheduling – Results and Outlook�(Prof. Henkel)
	Case Study: Swapping-on-the-fly�(Prof. Henkel)
	Hardware: Cell Overview�(Prof. Becker)
	Hardware: Routing Unit�(Prof. Becker)
	Hardware: Broadcasting Scheme�(Prof. Becker)
	Hardware: Cell Configuration Management�(Prof. Becker)
	Hardware: Router Implementation Details�(Prof. Becker)
	Organic Robot Control Architecture �(Prof. Wörn)
	Organic Robot Control: Motivation �(Prof. Wörn)
	Organic Robot Control Configurator �(Prof. Wörn)
	Organic Robot Control: First results �(Prof. Wörn)
	Organic Robot Control: First results�(Prof. Wörn)
	Conclusions
	Thank you for your attention !

