DFG SPP 1183 Organic Computing

Formal Modeling, Safety Analysis, and Verification of Organic Computing Applications

> Integrated design framework for the development of highly reliable and adaptive Goal: **Organic Computing applications**

Self-configuration

- Highly dynamic systems with self-x properties Scope:
- **Challenges:** > Decentralisation Unpredictability vs. Dependability Engineering self-x

Formal Methods

Software Engineering

Self-x features

unprocessed

processed workpieces

tighten

 \rightarrow Interactive verification \rightarrow Model checking

Domain Meta Model

Qualitative Analysis \rightarrow Fault Tree Analysis \rightarrow Adaptive DCCA (ADCCA) SYS⁺ \models E(\neg ($\Gamma \land \Delta$) until EG (\neg ($\Gamma \land \Delta$) \land H))

Quantitative Analysis \rightarrow Quantitative ADCCA

 $P \leq \Sigma_{CS \in CSS} \prod_{fm \in CS} P(fm)$

Prof. Dr. Wolfgang Reif Dr. Frank Ortmeier Matthias Güdemann Florian Nafz Hella Seebach

Department of Software Engineering and Programming Languages Faculty of Applied Computer Sciences University of Augsburg

www.informatik.uni-augsburg.de/swt reif@informatik.uni-augsburg.de

