

Organic Traffic Control

A joint research project
of Karlsruhe and Hannover Universities
SPP 1183
Organic Computing

- C. Müller-Schloer, F. Rochner Institute of Systems Engineering, System and Computer Architecture
- H. Schmeck, J. Branke, H. Prothmann
 Institute of Applied Informatics and Formal Description Methods

66

Outline

- Relationship QE↔OTC
- Motivation and requirements
- Local learning with classifier systems
- Offline learning
- Architecture
- Status

Two related projects: OTC and QE

- QE: Generic tools to detect and control emergent behaviour
- OTC: Traffic control system well suited as a test case for QE
- Use of QE tools within OTC will improve control system's performance
- Coordinated research, exchange of components in phase II

66

Motivation

Traffic Networks

- Congestion due to high utilization
- Intersections often bottlenecks
- Current approach: Centralized optimization
 - High complexity
 - High effort (computing power)
 - Inflexible
- OTC approach: Decentralized control
 - Scales with complexity of task
 - Generic system, easily transferable
 - Adaptive and flexible

Requirements for decentralized traffic control

- Capable of global optimization
- Adapts automatically to different environments
- Reacts quickly to changing traffic situations
- Behaves robustly

Self-configuring

Context-aware

Self-healing, Self-protecting

Self-X → **Organic System**

SRA L

Decentralization

- Learning node controller at every intersection
- Controller gets additional data from neighbour nodes

- Challenges:
 - Local learning
 - Cooperation ► Global optimization ► Stability

Challenge: Adaptation speed

- Reasonable operation from the start mandatory ► No learning from scratch
- Search space is huge ▶ Pure online-adaptation takes too long
- Initial rule set is generated and updated offline

Learning classifier system

- Basis: XCS (Wilson, 1994)
- Classifier: If-then-rule
 - Condition (if): Match against input
 - Action (then): Triggered if condition matches
 - Value: Probability of selecting this rule, changes according to success
 - Coding: Ternary (binary + wildcard)
- GA to generate new classifiers ► Adaptation
- Fuzzy classifier: Input mapping using fuzzy sets
- Problem: Classifiers are stateless (Markovian)

66

Evolutionary Algorithm

- Generates control strategies for traffic signals
- Quality of strategy is tested using a traffic simulator
- Fitness measures:
 - Mean travel time
 - Average number of stops
 - ...

- Strategies are evaluated under different traffic conditions
- Optimized if-then-rule (condition + strategy) is added to rule set of LCS

Layered structure: Detailed view

OG SRA M

Status

- Microscopic traffic simulator AIMSUN
- Model: n intersections
- Observer: Cooperation with project QE
- Potential cooperation: AutoNomos project
- Phase I (2005-2007): Emphasis on local node behavior
- Phase II: Cooperation in street networks

Team/Members

