

Quantitative Emergence Metrics, Observation and Control Tools for Complex Organic Ensembles

Jürgen Branke, **Urban Richter**, Hartmut Schmeck University of Karlsruhe (TH), Institute AIFB

Moez Mnif, Christian Müller-Schloer University of Hannover, Institute SRA

SRA CH

Outline

- 1. Team
- 2. Motivation
- 3. OC-Architecture
- 4. Goals
- 5. Test scenarios
- 6. Summary/Outlook

1. Team/Members

2. Motivation

Technical systems

- Increasing complexity
- Life-like characteristics (learning, adaptation,...)
- Maintain themselves
- Survive attacks and breakdowns
- Self-x-properties
- Move from a centralised system to a decentralised one
- Large number of interacting sub-systems
- Self-organization

2. Motivation (2)

 When collections of intelligent, autonomous devices cooperate in a self organized way, unexpected things may happen: (positive/negative) Emergence

Example for emergence: smart intelligent car

- Large number of controllers
 - To keep the vehicle on road
 - To control the engine
 - To assist the driver
 - ...
- Unexpected behaviour with respect to the environment
- Who can manage the complexity of such a network?
- Regulatory feedback mechanism

3. OC-Architecture

technical system

4. Goals

- Development and investigation of metrics for the observation and analysis of emergence in self-organizing systems (H)
- 2. Development and investigation of mechanisms to influence and control the effects of emergence in self-organizing systems (K)
- 3. Realisation of tools and validation of the tools in various test scenarios
- Observer/Controller-Architecture
- Toolbox with basic mechanisms to observe, analyze, and control emergent behaviour

5. Test scenarios

- Relatively simple (next slides)
- Taken from
 - Biological analogies
 - Straight-forward technical applications
- For Phase II:

Replace test scenarios with more complex technical scenarios like a traffic light control system:

Organic traffic control (OTC, concurrent project)

Test scenario: chicken dynamics simulator (H)

- Explain/control the collective behaviour of densely packed chicken in cages
- Emergent behaviour is spatial (clustering)
- Observation and Control
 - Observation of individual behaviours
 - Aggregation of individual behaviours
 - Influence of individual/ensemble behaviour
- Metrics under investigation e. g.
 - Cluster metrics
 - Vector sums
 - Entropy
- Control mechanisms e. g.
 - Ruby light
 - **Noises**
 - Screen

👙 Simulation

Test scenario: elevator simulator (K)

SRA MH

- Several elevators in a building
- All working with a simple rule
- Tend to synchronise (move up and down as a parallel wave)
- Bunching effect (emergence)
 - Sometimes positive
 - Sometimes negative
- Different peaks

Source: Beielstein et al., GECCO, 2003.

11

SRA

Observer

- Structural metrics (deal with order characteristics)
 - Clustering coefficient
 - Entropy (thermodynamics and information theory)
- Behavioural metrics (provide information on the interaction activities)
 - Learning behaviour/convergence
 - Activity, Stability, Complexity
- Practically applicable to detect and quantify emergence

Controller

- To influence the system such that a desired emergent behaviour appears
- To disrupt an undesired emergent behaviour as quickly and efficiently as possible

Influencing ...

- local decision rules
- the environment
- the communication network

•

6. Summary/Outlook

- Understand the effects of emergent global behaviour in networks of intelligent autonomous units
- Observer/Controller-Architecture
 - Observe self-organizing technical systems
 - Detect, measure, quantify, and control effects of emergence
- Toolbox: Methodology for observing and controlling self-organizing systems

The end

- Thank your for your attention.
- Any questions?
- Contact
 - {cms|mnif} @ sra.uni-hannover.de
 - {schmeck|branke|uri} @ aifb.uni-karlsruhe.de