Embedded Performance Analysis for Organic Computing (EPOC)

Rolf Ernst TU Braunschweig Startkolloquium SP1183 14.7.05

Overview

- introduction
- embedded systems performance analysis status
- online performance analysis
- towards organic systems
- work program

 high dependability requirements in many organic computing system applications

- particularly in embedded systems (medical, traffic, ...)

- dependability includes performance and real-time (QoS) guarantees
- self protection against loss of performance guarantees needed in organic computing systems
- requires dependable online determination of performance properties

© R. Ernst, TU Braunschweig, 2005

Embedded systems performance analysis - status

 integration of different system functions on a largely static platform

- complex real time requirements
 - end-to-end deadlines and jitter constraints
 - performance control for low power systems (DVS, power modes)
 - buffer under- and overflow conditions ..
- simulation or measurement (profiling) are most popular to verify system performance
 - time consuming
 - decreasingly reliable for larger systems
- alternatives
 - conservative design styles (e.g. using TDMA for decoupling, see TTP)
 - requires known static properties not appropriate
 - formal analysis

© R. Ernst, TU Braunschweig, 2005

Formal ES Performance Analysis

- formal real-time analysis approaches have been developed for many years
 - typically limited to components or homogeneously scheduled clusters
 - no scaling to heterogeneous systems
- major advances in formal ES performance analysis in recent years
 - holistic approaches extending traditional analysis to cover different resource sharing strategies
 - compositional analysis combining different local analysis algorithms
 - using network calculus (Thiele, Chakraborty)
 - using parameterized event models (SYMTA/S)

Compositional ES Performance Analysis

- events are iteratively propagated between local analysis modules
- local analysis solves system of fix point equations

© R. Ernst, TU Braunschweig, 2005

Required Stream Analysis Input

- · processes and communication models
 - execution time (interval)
 - communication volume (interval)
 - activation rules (time, event)
 - dependencies (e.g. task graph, cycles, transactions, ...)
- component models
 - available performance/bandwidth
 - scheduling strategies (processors and communication)

Find max total execution time, i.e. worst case response time R

© R. Ernst, TU Braunschweig, 2005

Analysis Uses "Busy Window" Approach

© R. Ernst, TU Braunschweig, 2005

Event Propagation and Analysis Principle

Compositional Performance Analysis - Applications

- network processor design
- automotive electronics
- VLSI

Sensitivity Analysis Results - Example

Compositional Performance Analysis - Observations

- fast, versatile and flexible
 - very fast compared to simulation
 - flexible and scalable
 - supports sensitivity analysis evaluates design robustness
 - enables optimization (e.g. genetic algorithms)
- could be executed online
 - analysis needs access to local data only
 - local analysis could be executed locally
 - compositional analysis could be distributed
 - event propagation corresponds to ES communication
 - \rightarrow event propagation can use existing communication channels
 - open issues in distributed online analysis
 - control
 - dynamics

© R. Ernst, TU Braunschweig, 2005

15

Online Performance Analysis

- requires online capturing of input parameters to analysis
- requires iterative online analysis

- dynamic network structure requires distributed, self organizing analysis process
- the analysis flow can be modeled as a data flow graph
 → analysis network

© R. Ernst, TU Braunschweig, 2005

Conclusion

- project extends compositional performance analysis to monitor global performance characteristics of OC systems at run time
- evaluates robustness and supports error avoidance
- basis for self protection as key problem of organic systems with dependability requirements
- could be enhanced to support organic system optimization