Organic Fault-Tolerant Control Architecture for Robotic Applications

Werner Brockmann, Erik Maehle University of Lübeck Institute of Computer Engineering Director: Prof. Dr.-Ing. E. Maehle

Karl-Erwin Großpietsch

Fraunhofer-Institut für Autonome Intelligente Systeme Schloss Birlinghoven, Sankt Augustin

AIS

Institut Autonome Intelligente Systeme

Karlsruhe, 14./15.07.2005

- Introduction
- ORCA Architecture
- Application Example
- Methods
- Conclusion

Motivation

Intended applications: autonomous mobile robots in human environments

 -> unstructured, dynamically changing environment

-> no explicit model of the environment

-> complex control systems

-> no explicit fault model

fault-tolerance, safety

engineering bottleneck

Introduction

Organic Systems

Organic systems adapt dynamically to environment and malfunctions

- uncertainties
- unknown environment
- unforeseen situations
- errors
- faults

Our approach: controlled self-organization

Inspiration:

Aim:

- controlled Self-Organization
- autonomic nervous system and immune system
 - detect, react, and adapt to malfunctions
 - avoid critical system states at any time
 - low cost implementation and engineering

Institute of Computer Engineering, University of Lübeck

Dr.-Ing. Werner Brockmann

ORCA-Architecture

OCU-BCU-Interaction

Software architecture DAISY (Distributed Architecture of Intelligent SYstems)

Application Example

Climbing Robot DEXTER

(DEXTerous Electric Rover)

Technical data:

- size 36,5×22×13 cm³
- weight about 3 kg
- 4 active degrees of freedom
- passive suction cups
- IR- and US-sensors on feet

Characteristics:

- distributed control system
- alternative behaviors
- incomplete perception

Application Example

Climbing Robot DEXTER

(DEXTerous Electric Rover)

Institute of Computer Engineering, University of Lübeck

Dr.-Ing. Werner Brockmann

Methodological Approaches

- signals reflecting the 'health' of a signal or a BCU

- e.g. noisiness, confidence of output results,
 - load state; error state
- adaptive action selection
 - **IF** movement=blocked
 - **THEN** activation of commanded behaviour -=5%,
 - activation of non-commanded behaviour +=5%
- learn to treat malfunctions
 - -> learning at BCU- and OCU-level

Hybrid Crisp-Fuzzy Systems

Key features:

- granular computing (partitioning of the input space)
- mixed crisp and fuzzy processing
- normalization of rule-base
- rule-based specification as well as learning
- very fast computation, hard real-time learning
- decomposition to fight complexity
- individual attributes for each partition
 - -> tag-bit for guided online-learning
 - -> safety warranty

Adaptive Filters

Key features:

- complexity reduction of the control space
- weighted summation out of "history array"
- learning of linear parameters
- minimizing the difference between desired and measured system behaviour
- at higher system levels, combination with hybrid crisp-fuzzy systems
- used for
 - -> health monitoring of local components
 - -> compensation of small local malfunctions

Conclusion

<u>Application:</u> fault-tolerant autonomous mobile robots

-> flexible, but safe adaptation to malfunctions (unforeseen events, errors, faults, ...)

<u>Architecture:</u> mimic autonomic nervous system and immune system

-> ORCA-architecture + learning

Methods: - 'health'-status

- controlled self-organisation

- -> hybrid crisp-fuzzy systems
- -> adaptive filters

Institute of Computer Engineering, University of Lübeck

Dr.-Ing. Werner Brockmann