Multi-objective Intrinsic Evolution of Embedded Systems

Marco Platzner Computer Engineering Group University of Paderborn

platzner@upb.de

Goal / Vision

 investigate intrinsic evolution as a mechanism to achieve selfadaption and –optimization for autonomous embedded systems

- an embedded system ...
 - adapts to slow changes by simulated evolution
 - typically, change of environment
 - adapts to radical changes by switching to pre-evolved alternatives
 - typically, change in computational resources
 - requires intrinsic evolution for autonomous operation

Outline

- goal / vision
- background
- work program
- potential collaboration areas

Biologically-inspired Hardware Systems

POE model [Sipper+97]

Evolvable Hardware (EHW)

- evolutionary algorithms applied at the hardware-level
 - term first used in [deGaris93, Higuchi+93]
- evolutionary algorithms are
 - population-based, stochastic optimization methods based on
 - biologically-inspired operators: selection, crossover, mutation
- hardware-level
 - digital or analog hardware, reconfigurable hardware is a good match
 - field-programmable gate arrays (FPGA)
 - field-programmable analog arrays (FPAAs)
 - the evolved circuit can be represented at various levels of abstraction
 - behavioral description (eg. VHDL program)
 - functional level (eg. dataflow graph)
 - gate level
 - bitstream for FPGA/FPAA

EHW – Fitness Evaluation

extrinsic evolution

- fitness of a circuit is evaluated by a circuit simulator
- slow, used by most related work

intrinsic evolution

- fitness of a circuit is evaluated on the target system
- fast, fitness can include parameters of the real circuit

versus

off-line evolution

use training data set to evolve the circuit, sometimes test data set to verify

on-line evolution

circuit evolved while being operational, no training phase, no test data

EHW – Time-varying Specifications

- embedded evolutionary circuit design {intrinsic, off-line}
 - eg. prosthetic hand controller [Higuchi+99-1]
 - specification changes rarely (changes in the biosignals of the arm)
- self-adaptive systems {intrinsic, off-line}
 - eg. real-time image processing, hashing [Damiani+98]
 - re-evolution triggered by a threshold on some parameter
- self-triggered systems {intrinsic, off-line}
 - eg. image compression by prediction coding [Sakanashi+04]
 - each block of input data triggers re-evolution
- on-line evolution {intrinsic, on-line}
 - eg. navigation and tracking for autonomously moving robots [Higuchi+99-1, Tyrrell+04]
 - problem: how to evaluate fitness?

EHW – State & Challenges

- state of evolvable hardware
 - evolutionary circuit design: some astonishing circuits have been evolved, sometimes totally different from classically engineered circuits, sometimes even superior
 - time-varying specifications: first results demonstrate potential for self-adaption
- main challenges in evolvable hardware
 - scalability: runtime does not scale with circuit size
 - robustness: unconstrained intrinsic evolution may produce circuits that are not useful from an engineering perspective
 - validation: evolution does not necessarily produce correct circuits

Work Program (Period I)

- investigate and develop models and algorithms
 - representation model for hardware/software functions
 - intrinsic multi-objective evolutionary algorithm
- develop basic hardware/software system architecture
 - self-reconfiguration
 - mapping to hardware and software

analysis and evaluation

- investigate application domains for intrinsic evolution, off-line and on-line
- evaluate algorithms

Hw/Sw Representation Model

- encoding of circuits
 - compact to allow for efficient genetic operators
 - not too far away from real hardware to allow for efficient mapping
- cartesian genetic programming
 - matches FPGA architectures
 - unused blocks, unconnected inputs, redundant nodes

M. Platzner

Hw/Sw Representation Model

- approach: two-level representation
 - behavioral model allows for efficient genetic operators
 - structural model allows for efficient mapping to hardware and software
 - \bullet restrict behavioral model to simplify the transformation behavioral \rightarrow structural

Intrinsic Multi-objective Evolutionary Algorithm

adapt to slow changes by simulated evolution
approximated Pareto front (functional quality, area, speed, energy)
adapt to radical changes by switching to pre-evolved alternatives

System Architecture and Application Analysis

- system architecture
 - Xilinx VirtexII Pro/Virtex-4 FPGAs as platform
 - partial reconfiguration

application domain analysis

- approach: functions that are characterized by some "functional quality" (rather than a binary correctness)
- identify basic building blocks and interconnect structures for evolution

Potential Collaboration Areas

architectures: "organic" systems-on-chip

evolutionary algorithms: dynamic fitness functions

applications: robotics, image compression

[Sipper+97]

Sipper, M. et al. A phylogenetic, ontogenetic, and epigenetic view of bio-inspired hardware systems. *IEEE Transactions on Evolutionary Computation.* 1(1):83-93, 1997.

[deGaris93]

Evolvable Hardware – Genetic Programming of a Darwin Machine. In *Proceedings International Conference* on Artificial Neural Networks and Genetic Algorithms (ICANNGA). Springer, 1993.

[Higuchi+93]

Evolving Hardware with Genetic Learning: A First Step Towards Building a Darwin Machine. In *Proceedings* 2nd International Conference on Simulation of Adaptive Behavior (SAB), pages 417–424. MIT Press, 1993.

[Higuchi+99]

Evolvable Hardware Chips for Industrial Applications. *Communications of the ACM*, 42(4):60–66, April 1999.

[Higuchi+99-1]

Real-world Applications of Analog and Digital Evolvable Hardware. *IEEE Transactions on Evolutionary Computation*, (3):220–235, 1999.

[Sekanina04]

Evolvable Components. Natural Computing Series. Springer, 2004.

[Damiani+98]

Evolutionary Design of Hashing Function Circuits Using an FPGA. In *Proceedings International Conference* on Evolvable Systems (ICES 98), pages 36–46. Springer, 1998

References (cont'd)

[Sakanashi+04]

Evolvable hardware for lossless compression of very high resolution bi-level images. *IEE Proceedings Computers & Digital Techniques*, 151(4):277–286, July 2004.

[Tyrrell+04]

Evolutionary algorithm for the promotion of evolvable hardware. *IEE Proceedings Computers & Digital Techniques*, 151(4):267–275, July 2004.

[Zitzler+02]

SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization. In *Evolutionary Methods for Design, Optimisation, and Control*, pages 95–100, 2002.