
LogFileAnalyzer
for Learning Classifier Systems

– Version 1.1 –

Clemens Gersbacher Holger Prothmann∗

holger.prothmann@kit.edu

August 29, 2008

The LogFileAnalyzer supports the analysis of Learning Classifier System
(LCS) experiments. LCSs are rule-based evolutionary learning systems that
code their knowledge in a population of rules (called classifiers). The clas-
sifier population evolves and changes constantly. New classifiers are created,
bad classifiers are deleted, and existing classifiers are modified and updated.
The LogFileAnalyzer can help to better understand this dynamic process by
visualizing the classifier sets in tables and histograms.

Contents

1 Introduction 2

2 Getting started 3

3 The LogFileAnalyzer classes 3
3.1 Main class and data storage (Package de.dfg.oc.logfileanalyzer) . . . 3
3.2 Histograms (Package de.dfg.oc.logfileanalyzer.histograms) 4
3.3 Graphical User Interface (Package de.dfg.oc.logfileanalyzer.gui) . . 4

4 Modifications to the LogFileAnalyzer 4
4.1 Create your own import method . 4
4.2 Change the name of table columns . 5
4.3 Create your own histograms . 6
4.4 Compiling your changes . 7

5 License and further documentation 7

∗Karlsruhe Institute of Technology (KIT), Univ. Karlsruhe (TH), Institute AIFB, 76128 Karlsruhe,
Germany

1

1 Introduction

The LogFileAnalyzer is a program that supports the analysis of Learning Classifier
System (LCS) experiments. LCSs are rule-based evolutionary learning systems [1] that
code their knowledge in a population of rules (called classifiers). A classifier cl consists
of a condition cl.c, an action cl.a, and an evaluation that contains (usually among other
values) a reward prediction cl.r. Given that condition cl.c is satisfied and action cl.a is
executed, the classifier cl predicts a reward cl.r. In an LCS experiment, the classifier
population evolves and changes constantly. New classifiers are created, bad classifiers
are deleted, and existing classifiers are modified and updated.

The LogFileAnalyzer can help to better understand this dynamic process by visualiz-
ing classifier sets in tables and diagrams:

• For each iteration in an LCS experiment, the classifier population, the match set,
and the action set can be displayed in separate tables. The tables can be sorted
using any classifier property as criterion. Therefore, classifiers of special interest
(e. g. those having a high prediction) can easily be determined for further investi-
gation. The development of classifier sets over time can be tracked iterationwise
or by directly addressing the sets of an iteration by its number.

• Classifier sets can be visualized using histograms. Histograms are created auto-
matically for each classifier property and visualize the distribution of classifiers
with respect to the displayed property. Filters can be applied to each histogram,
additionally charts can be saved and printed.

• Single classifiers can be compared to all other classifiers in a set. Diagrams display
the classifier’s properties relative to the minimum and maximum values of the
containing set.

Figure 1 shows a screenshot of the LogFileAnalyzer.

Figure 1: A screenshot of the LogFileAnalyzer

2

2 Getting started

The LogFileAnalyzer is written in Java. To install and start the program, follow these
steps:

• Uncompress the contents of lcsgui v1-1.zip to a local folder.

• Check the system requirements:

– A Java Runtime Environment (JRE 6 or later) is needed to run the program.
The latest JRE is available from [3].

– To create histograms, the LogFileAnalyzer relies on JFreeChart which is avail-
able from [2]. Download and uncompress the JFreeChart package and copy
the contents of its /lib-folder to the /lib/ext-folder of your JRE. Without
JFreeChart, the LogFileAnalyzer will run, but no histograms can be created.

• Start the LogFileAnalyzer by double clicking lcsgui v1-1.jar.

• Open the example.log to check the functionality of the program.

3 The LogFileAnalyzer classes

This section briefly describes the most important classes of the LogFileAnalyzer divided
by packages.

3.1 Main class and data storage (Package de.dfg.oc.logfileanalyzer)

The main package contains classes necessary for starting the program and storing the
classifier sets.

LogFileAnalyzer The LogFileAnalyzer is the program’s main class. It determines how
log-files are imported and how histograms are created. Furthermore, it defines the
column names used in the program’s tables. A LogFileAnalyzer is a singleton,
its instance can be obtained by using the static getInstance()-method of this
class. To adapt the program to your needs, use the setDataImporter()-, set-
Histograms()-, and setColumnNames()-methods. To run the program, call its
startLogFileAnalyzer()-method.

DataImporterInterface Classes that read LCS log-files need to implement this inter-
face by providing the getNextDataElement()-method specified here. The method
should read a log-file and return the classifier sets for one iteration.

DefaultDataImporter The DefaultDataImporter is an example class that implements
the DataImporterInterface. It is used to read the example.log provided with
the LogFileAnalyzer.

3

DataElement A DataElement stores all classifier sets (i. e. population, match set, and
action set) of one iteration. Each set is stored in a DefaultTableModel that can
be directly displayed in the user interface. Furthermore, a DataElement contains
references to the DataElements of the previous and next iteration.

DataMemory This class stores the DataElements of all iterations of an experiment. It
relies on the DataImporterInterface to read complete log-files and provides a
method to search for DataElements by their iteration.

3.2 Histograms (Package de.dfg.oc.logfileanalyzer.histograms)

The histograms-subpackage contains classes necessary to create histograms.

AbstractHistogram Inherit from this abstract class when creating new histograms. The
calculateHistogramData()-method has to provide the data displayed in the his-
togram.

UniveralHistogram The UniversalHistogram-class extends AbstractHistogram. It
can be used to create a histogram for any table column by simply passing the
column name to its constructor.

3.3 Graphical User Interface (Package de.dfg.oc.logfileanalyzer.gui)

The gui-subpackage contains classes defining the graphical user interface of the program.

TableFrame This class provides the main window containing the menu, buttons to step
through the iterations, and tables displaying the classifier sets.

ChartFrame This class provides a frame containing the histogram chart.

4 Modifications to the LogFileAnalyzer

4.1 Create your own import method

To import your own log-files, you need to create your own class that implements the
DataImporterInterface. The class needs to define the method getNextDataElement()
which returns a DataElement containing the classifier sets belonging to the next unpro-
cessed iteration. A BufferedReader is provided as parameter to access the log-file. See
Listing 1 for a brief example implementation or compare the DefaultDataImporter-class
for details.

Listing 1: Create a DataImporter

class MyDataImporter implements DataImporterInterface {
public DataElement getNextDataElement(BufferedReader _bR) {

// Create a DataElement to store classifier sets ...

DataElement newElement = new DataElement ();
// Obtain table to store classifier population ...

4

DefaultTableModel pop = newElement.getPopulation ();
try {

// Read classifiers from log -file ...

String currentLine = _bR.readLine ();
while (currentLine != null) {

// Split classifier (condition , action , prediction)...

String [] clParts = currentLine.split(" ");
// Add classifier to set ...

pop.addRow(clParts);
// Read next classifier ...

currentLine = _bR.readLine ();
}

} catch (Exception e) {
// Error handling ...

}
// Add set to DataElement ...

newElement.setPopulation(pop);
// Repeat for match and action set and finally ...

return newElement;
}

}

To use your newly created class, find the main()-method of the LogFileAnalyzer-
class, create an instance of your DataImporter and pass it to the setDataImporter()-
method of the LogFileAnalyzer (see Listing 2).

Listing 2: Use your DataImporter
public static void main(String [] args) {

LogFileAnalyzer lfa = LogFileAnalyzer.getInstance ();
// Use your DataImporter ...

lfa.setDataImporter(new MyDataImporter ());
lfa.startLogFileAnalyzer ();

}

4.2 Change the name of table columns

Column names can be changed from the LogFileAnalyzer’s main()-method. Simply
define your names and pass them to the setHeaders()-method (see Listing 3).

Listing 3: Change the name of table columns
public static void main(String [] args) {

LogFileAnalyzer lfa = LogFileAnalyzer.getInstance ();
// Define your column names ...

String [] myColumnNames = {"Cond", "Act", "Pred"};
lfa.setHeaders(myColumnNames);
lfa.startLogFileAnalyzer ();

}

5

4.3 Create your own histograms

To add your own histogram, you need implement a new histogram class. The class
needs to extend the class AbstractHistogram (located in the histogram-package) and
implement the abstract method calculateHistogramData(). The method receives the
currently selected classifier set as parameter and should return a Vector containing
the data that will be displayed in the histogram. Listing 4 shows an implementation
of the calculateHistogramData()-method that calculates the specificity of classifier
conditions and stores this data in a Vector that is returned for display. The complete
class SpecificityHistogram is available in the histogram-package.

Listing 4: Create your own histograms

Vector <Double > calculateHistogramData(DefaultTableModel _table) {
// Store specificity here ...

Vector <Double > dataVector = new Vector <Double >();
// Get column id for condition ...

int column = _table.findColumn("Condition");
// For all classifiers ...

for (int row = 0; row < _table.getRowCount (); row++) {
// Read condition ...

String conditionString = (String)_table.getValueAt(row , column);
// Determine number of (non -specified) bits ...

char[] conditionBits = conditionString.toCharArray ();
int numberOfBits = conditionBits.length;
int numberOfSpecifiedBits = 0;
for (int i = 0; i < numberOfBits; i++) {

if (!(conditionBits[i] == ’#’)) {
numberOfSpecifiedBits ++;

}
}
// Calculate specificity ...

double specificity = (double)numberOfSpecifiedBits
/ (double)numberOfBits;

dataVector.add(specificity);
}
return dataVector;

}

Finally, you need to register your histogram class. Therefore, find the main()-method
of the LogFileAnalyzer-class, create an instance of your histogram class, and pass it to
the LogFileAnalyzer’s addHistogram()-method (see Listing 5).

Listing 5: Add your newly created histogram
public static void main(String [] args) {

LogFileAnalyzer lfa = LogFileAnalyzer.getInstance ();
// Add your histogram ...

lfa.addHistogram(new SpecificityHistogram("Specificity"));
lfa.startLogFileAnalyzer ();

}

6

4.4 Compiling your changes

Besides JFreeChart [2], a Java Development Kit (JDK 5 or later) is required to compile
your changes. The latest JDK is available from [3]. To compile, change to the src-folder
of the LogFileAnalyzer and use the following command (path\to\jfreechart\libs is
the folder containing the JFreeChart libraries):

javac -extdirs path\to\jfreechart\libs de\dfg\oc\logfileanalyzer*.java

To run your code, execute java de.dfg.oc.logfileanalyzer.LogFileAnalyzer from
the src-folder.

5 License and further documentation

The LogFileAnalyzer is licensed under the terms of the GNU General Public License.
If you want to make further modifications to the program, please consider the JavaDoc
available in the doc-folder.

Acknowledgement

We would like to thank Jürgen Branke and Urban Richter (both from the Karlsruhe
Institute of Technology) as well as Fabian Rochner (Leibniz Universität Hannover) for
their valuable suggestions. The development of the LogFileAnalyzer was financially
supported by the German Research Foundation (DFG) within the priority program 1183
“Organic Computing”.

References

[1] M. V. Butz. Rule-Based Evolutionary Online Learning Systems – A Principled Ap-
proach to LCS Analysis and Design. Springer, 2005.

[2] Object Refinery Limited. JFreeChart web page. http://www.jfree.org/
jfreechart/.

[3] Sun Microsystems. Java web page. http://java.sun.com/.

7

